Faculty

Research Areas

Name or Keywords

Reset

Priyanka Pundir

We are interested in understanding how mast cells recognize beneficial and pathogenic microbes to maintain tissue homeostasis and educate the immune system. Our lab uses an interdisciplinary approach that combines mouse and microbial genetics, receptor pharmacology, sequencing, multiparameter flow cytometry, microscopy, and infection models to elucidate how the G protein-coupled receptors expressed by mast cells act as sensors of the communication between host and microbes. Our ultimate goal is to guide fundamental knowledge necessary for developing next-generation therapeutics for infectious and inflammatory diseases.

Learn More

Priyanka Pundir Read More »

Melanie Alpaugh

The Alpaugh Lab studies the mechanisms and consequences of protein misfolding in neurodegenerative diseases.
Theme 1- Interactions between the blood-brain barrier and misfolded proteins. Protein accumulation and blood-brain barrier break down are common features of diseases such as Alzheimer’s, Parkinson’s and Huntington’s diseases. We aim to understand if these two common disease features are related using a human 3D-cell culture model of the blood-brain barrier and human tissue.
Theme 2- Contributions of huntingtin seeding and spreading to Huntington’s disease. The mutant huntingtin protein displays prion-like properties. The Alpaugh lab is tackling the relevance to Huntington’s disease using tissue from human patients with Huntington’s disease phenocopies and Huntington’s disease.

Learn More

Melanie Alpaugh Read More »

Joey Bernhardt

We aim to advance our fundamental understanding of the drivers of biodiversity change and the consequences of these changes for human well-being. Our research advances a solution to this research challenge by studying the processes that unite all of life on Earth – the metabolic processes by which living systems uptake, store and convert energy, matter and information from their environments to grow and persist. We combine theory, experiments and synthesis to study how living systems change as the environment changes, and what these changes mean for human well-being.

Learn More

Joey Bernhardt Read More »

Quinn Webber

Parasites and pathogens are ubiquitous in nature. Some pathogens require host social contact for transmission, while others are transmitted through an environmental reservoir. For animals, among the most important drivers of parasite infection is behaviour. Our research program investigates the costs (parasitism) and benefits (fitness) of social and spatial behaviours in animal species of conservation concern. Specifically, bats are reservoir hosts to pathogens of human health concern and face declines due to white-nose syndrome. Caribou populations are in decline due to habitat destruction, climate change, and parasitism. In summary, our research group integrates theory across multiple ecological disciplines to tackle complex conservation and One Health problems.

Learn More

Quinn Webber Read More »

Yang Xu

Research in the Xu laboratory focuses on plant and microalgal lipid metabolism. By applying state-of-the-art approaches in genetics, biochemistry, cellular biology, synthetic biology and biotechnology, we aim to address both fundamental and applied questions in the field. The major research objectives in our research group are to improve our understanding of the mechanisms underlying acyl lipid assembly (e.g. triacylglycerols/oils, galactolipids/photosynthetic membrane lipids, phospholipids/membrane lipids) in photosynthetic organisms and to design lipid biosynthetic pathways to improve agriculture production and produce value-added oils for food, feed, fuel, and materials applications.

Learn More

Yang Xu Read More »

Matthew Sorbara

Healthy gut microbiota can be disrupted due to antibiotic treatment, intestinal inflammation, or changes in diet. Targeted restoration of the microbiota will require an understanding of how genomic diversity between closely related microbes influences their ability to drive beneficial functions. To address this, our laboratory will use a large collection of whole-genome sequenced isolates to understand how variation between closely related gut isolates alters their ability to prevent pathogen expansion and maintain homeostatic interactions with the mucosal immune system.

Learn More

Matthew Sorbara Read More »

Sherri Cox

My research is rooted in wildlife rehabilitation. Specifically, I am interested in the welfare of wild animals and helping restore health to sick and injured wildlife. I am also interested in looking at anthropogenic effects on wildlife that have been admitted to rehabilitation centres. There are so many ways that our actions have an impact on wildlife, and I am interested in helping wildlife rehabilitators care for wild animals for subsequent release back to the wild. I am also interested in wild animal welfare when working with free-ranging wildlife. In addition, we are investigating the extent of lead toxicosis in many (apparently) healthy Trumpeter Swans, as well as investigating other morbidities in individual wild animals admitted to rehabilitation centres.

Learn More

Sherri Cox Read More »

Mazyar Fallah

I study the neurophysiology of cognitive processes. My research focuses on eye movements and how they interact with cognitive and executive functions. For example, I explore how features are integrated across multiple brain areas to form object representations, how attention and object representations drive eye movements, and how the visual system prioritizes peripersonal space. I am also interested in the networks in the brain that perform all these processes and how they can be impaired due to concussion and subconcussive impacts.

Learn More

Mazyar Fallah Read More »

Kerry Ritchie

I conduct research in two areas:
1) Impact of teaching strategies on student learning and engagement in large classes: My goal is to modify and scale best teaching practices to suit large class sizes (100-600+ students). I evaluate the impact of these strategies on student learning and engagement. I am also interested in novel methods for teaching critical thinking and communication skills in health sciences education.
2) Health and performance of emerging adults in the early transition to university: I aim to better understand student experience to develop programs and strategies to optimize student performance. I study how lifestyle choices, social environments, and study strategies can influence student wellbeing and academic success.

Learn More

Kerry Ritchie Read More »

William Bettger

In terms of teaching and learning, my primary areas of expertise are:
1) Curriculum design according to the new University of Guelph learning outcomes
2) Community-engaged, project-based learning
3) Creativity as a key learning outcome for student career development
In terms of knowledge transfer, my primary areas of expertise are:
1) Incorporating functional food and nutraceutical concepts into the design and practice of Lifestyle Medicine
2) Promoting studies of human anatomy as a foundation for the teaching and learning of Lifestyle Medicine in the general public

Learn More

William Bettger Read More »

Mehrdad Hajibabaei

Our work spans three research themes:
1) DNA metasystematics: We gather biodiversity data through the analysis of marker genes from bulk samples (water, soil, and sediments). We pioneered this technique for benthic macroinvertebrates, used widely as bioindicators of aquatic ecosystems.
2) Biodiversity transcriptomics: We develop comparative transcritpome-based approaches for non-model organisms to gain insights on evolution of transcriptomes and understand molecular responses at ecological scale.
3) Bioinformatic approaches for biodiversity genomics data: We develop and test taxonomic assignment approaches for many taxonomic groups and marker genes, and develop tools to enhance analysis of metabarcoding and biodiversity genomic data through machine-learning methods and refined analysis.

Learn More

Mehrdad Hajibabaei Read More »

Moira Ferguson

My research program focuses on understanding the genetic basis of evolutionary change. In particular I am concentrating on two major components of the evolutionary process. Firstly, I study how genetic differences among individuals lead to variation in the numbers and survival of their offspring (fitness). Secondly, I determine how those genetic differences can become partitioned between populations when they begin to diverge genetically into different species. Salmonid fishes (Atlantic salmon, Arctic charr, rainbow trout, brook charr) continue to be the models for most of this work because their biology makes them interesting candidates for genetic analysis.

Learn More

Moira Ferguson Read More »

Lawrence Spriet

Dr. Spriet's basic research examines how skeletal muscle generates the large amounts of energy needed to exercise and compete in work and sport situations. The pathways that metabolize carbohydrate and lipid as fuel to produce energy are studied in human skeletal muscle. His practical research examines whether compounds that are purported to be "ergogenic" or work enhancing agents actually augment muscle metabolism and/or improve human performance (e.g. blood doping, creatine, carnitine, pyruvate, taurine, caffeine and omega-3 fatty acids). He also conducts hydration/sweat testing and research aimed at counteracting the effects of dehydration in athletes engaging in stop-and-go sports like ice hockey, basketball, and soccer.

Learn More

Lawrence Spriet Read More »

John Zettel

My current research blends my research backgrounds in biomechanics and visuomotor control to examine how postural control is integrated and coordinated with voluntary movement (e.g. reaching, stepping, whole-body reaching). I am interested in developing an understanding of balance and movement both from a fundamental level, and in application to the immense problem of impaired mobility and falls in older adults and other clinical populations (e.g. stroke).

Learn More

John Zettel Read More »

Ryan Norris

Research in my lab is focused on the behaviour, ecology, and conservation of animals living in seasonal environments. Much of our field work is conducted on songbirds and butterflies but also includes past and present studies on salamanders, fruit flies, nightjars, seabirds, and domestic cats. We use both observational and experimental approaches, often combining these with emerging tracking technologies, to understand factors influencing variation in fitness and population abundance. Our two primary long-term studies are on Canada jays in Algonquin Park, ON (50+ yrs) and Savannah sparrows on Kent Island, NB (30+ yrs).

Learn More

Ryan Norris Read More »

Coral Murrant

My main research focus centres around the issue of how contracting skeletal muscle can communicate with blood vessels in order to ensure adequate blood flow to the working skeletal muscle cells. There is a direct relationship between skeletal muscle metabolic rate and blood flow. This type of relationship requires that active skeletal muscle cells communicate their need for blood flow to the cells of the vasculature, endothelial cells and vascular smooth muscle cells, and that these cells alter their function in order to ensure the proper blood flow delivery. I am interested in this intercellular communication.

Learn More

Coral Murrant Read More »

Lindsay Robinson

I am interested in understanding the physiological roles and regulation of adipose tissue and skeletal muscle-derived cytokines in mediating metabolic processes in the body. I am particularly interested in the mechanisms by which dietary factors and/or exercise modulate various cytokines and inflammatory mediators implicated in insulin resistance, a key characteristic of obesity and type 2 diabetes. My current research projects are:
1) Regulation of adipose tissue-derived cytokines in integrative metabolism.
2) Effect of n-3 and n-6 fatty acids in the presence and absence of LPS on adipocyte secretory factors and underlying mechanisms.
3) Effect of dietary fatty acids on pro-inflammatory markers in an in vitro murine adipocyte macrophage co-culture model.

Learn More

Lindsay Robinson Read More »

Jeremy Simpson

My lab conducts research on several areas related to cardio-respiratory physiology and pathophysiology. For example, we are studying: 1) how the heart initially adapts to hypertension before the development of contractile dysfunction and heart failure; 2) skeletal and cardiomyocyte cell signalling during normal and hypoxic conditions; 3) proteomic alterations that occur in limb muscles during exercise; 4) key post-translational modifications of myofilament proteins that arise during the development of whole muscle dysfunction as a result of fatigue or ischemia; and, 5) dyastolic dysfunction in various physiological and pathological states, such as aging, sex differences, and models of heart failure.

Learn More

Jeremy Simpson Read More »

Lori Vallis

To date, my research program has focused on strategies used to execute safe movement during adapted locomotor tasks (steering, obstacle circumvention, obstacle stepping) and the role of vision in these tasks. I am also interested in exploring the impact of cognitive or brain function on locomotor control. Given the commonness of dual tasking in our daily living, I hope to map patterns of cognitive-locomotor interference for multiple adapted locomotor (e.g. obstacle circumvention) and cognitive activities (e.g. visuo-spatial cognitive tasks) and ascertain optimal training strategies for dual-task performance.

Learn More

Lori Vallis Read More »

David Wright

Since changes in how the body metabolizes glucose are a hallmark of Type 2 diabetes, understanding how the function and metabolism of adipose tissue are regulated will be crucial for understanding diabetes itself. My students and I look at how exercise and nutritional interventions affect gene expression in adipose tissue, and, in turn, how these changes can affect both adipose tissue metabolism and whole-body glucose metabolism. One of the applications of my research is to potentially develop new, non-drug-based approaches that can be used to prevent and/or reverse Type 2 diabetes.

Learn More

David Wright Read More »

Baozhong Meng

The ultimate goal of my research is to understand viruses and viral diseases for the betterment of agriculture. Our research involves a number of important viruses that infect plants, which include Grapevine rupestris stem pitting-associated virus (GRSPaV), a ubiquitous and important pathogen of grapes worldwide. Current research directions include: Processing and subcellular localization of polyproteins; structure and cellular localization of viral replication complexes; evolution and bio-informatics of grapevine viruses; development of virus-induced gene-silencing vectors ; and, development and application of technologies for the diagnosis of grapevine viruses.

Learn More

Baozhong Meng Read More »

Annette Nassuth

My research group investigates biotic and abiotic stress on plants at the cellular and sub-cellular biochemical and molecular levels. The objective is to identify what changes occur in plant cells upon exposure to stress and which of these changes aid the plant to increase its tolerance to the stress.A major focus currently is the investigation of freezing stress tolerance in grapevines. Winters in Ontario can cause substantial damage to the cultivated grapes used in the Wine Industry, whereas wild grapes have no problems. We try to find out what the molecular basis is for this phenomenon. The ultimate goal is to use this knowledge to improve freezing and drought stress tolerance in the cultivated grapes.

Learn More

Annette Nassuth Read More »

Siavash Vahidi

A key focus of the group is on the protein degradation machinery that helps to maintain proper level of proteins (protein homeostasis) in Mycobacterium tuberculosis, the causative agent of TB, the world's single largest infectious killer that is annually responsible for 1.5 million deaths. The questions we aim to answer are:
1) What is the assembly mechanism of the M. tuberculosis proteasome core particle and its regulatory particles?
2) What is the role of allostery and long-range interactions in the machinery that tags substrates for proteasomal degradation?
3) How are substrates selected for tagging and degradation?
4) What is the molecular basis of antibiotics that operate by disrupting proteasomal protein degradation?

Learn More

Siavash Vahidi Read More »

George van der Merwe

We study the transcriptomic and proteomic adaptation of yeasts to changing nutrient environments, as well as their domestication and fermentation to better understand yeast performance and potentially develop strategies and predictions of fermentation efficiencies and flavour compound production during alcoholic fermentations. We also look at yeast diversity and the unique flavour compounds that could expand product diversity in the wine, beer and cider industries.

Learn More

George van der Merwe Read More »

Terry Van Raay

Many of the signaling pathways that are involved in development are also involved in the onset and progression of disease. As an example, the Wnt signaling pathway is required during many stages of development and in the homeostasis of stem cells in the adult. Perturbation of this pathway in stem cells in the adult often leads to cancer. It is now known that greater than 90% of colorectal cancers are caused by mutations in the Wnt signaling pathway. As this pathway is important for both proper development and disease, I am curious to know how this pathway can turn it self on and off so many times during development and why it fails to turn off in disease. The lab focuses on two negative feedback regulators of Wnt signaling: Nkd1 and Axin2.

Learn More

Terry Van Raay Read More »

Scroll to Top