Keyword: Ecosystem services

Amy Newman

We study proximate and ultimate questions around stress ecophysiology. We combine field studies and laboratory analyses to examine the persistent effects of early life stress on physiology, behaviour and fitness. We use a variety of approaches from large-scale manipulations in the wild to controlled laboratory experiments. I am excited by integrative questions that span levels of biological organization and students in the lab are encouraged to explore questions from evolutionary, ecological, physiological and molecular perspectives.

Learn More

Amy Newman Read More »

Joseph Colasanti

One of the fundamental questions in plant biology concerns the nature of the signals that bring about the transition from vegetative to reproductive growth. My research is aimed at characterizing the developmental signals that cause plants to flower. The primary focus of this work is the maize indeterminate gene (id1). Maize plants that lack id1 function flower extremely late, or not at all, and they exhibit abnormal flower development. The ID1 protein contains zinc-finger motifs, suggesting that it regulates the expression of other genes. Expression analysis reveals that id1 mRNA is expressed only in leaf tissue, suggesting that ID1 acts by controlling the production of leaf-derived signals that mediate the transition to flowering.

Learn More

Joseph Colasanti Read More »

Robert Hanner

Molecular biodiversity research and highly qualified personnel training are lab focal points. Using field and lab-based methods together with bioinformatic tools and statistical modelling approaches, we study the patterns and drivers of species habitat occupancy, community assembly and food web ecology. This information is central to addressing a variety of questions pertaining to biodiversity conservation, environmental effects monitoring and food security. We also contribute to the development of standard methods and best practices necessary to enhance receptor uptake capacity for a variety of partners including indigenous peoples, industry, governmental as well as non-governmental organizations, and other citizen science initiatives.

Learn More

Robert Hanner Read More »

John Fryxell

Recent work has involved herbivores and carnivores movement ecology in Serengeti, woodland caribou, wolves, and moose in northern Ontario, and both wild and Norwegian reindeer. We conduct detailed field and experimental studies of both behavioural and demographic responses to landscape heterogeneity and compare these with theoretical models. As part of the Food from Thought research program, we are also evaluating the impact of anthropogenic stressors (nutrient additions due to fertilizer run-off, pesticide application, and temperature increase due to global climate change) on phytoplankton and zooplankton populations in massive aquatic mesocosms and the effect of marginal land restoration (prairies, wetlands, and secondary forest) on arthropod biodiversity using DNA meta-barcoding.

Learn More

John Fryxell Read More »

M. Alex Smith

In this lab, we work to better understand the contemporary distribution of hyperdiverse, and often cryptic, species of insects across major ecological gradients in tropical and temperate environments. Our research is built upon projects designed to explore the causes and consequences of biodiversity across elevational, latitudinal and disturbance gradients and builds on long-term collections using phylogenetic, functional and physiological measures. I am committed to teaching, and learning from, diverse individuals and scientists, participating in outreach, improving how we communicate science, and publishing accessible research and data.

Learn More

M. Alex Smith Read More »

Kevin McCann

Generally speaking, we are interested in understanding how biological structure, broadly defined to include structure of all biological forms, mitigates the stability and functioning of ecosystems. This question naturally leads to understanding how human impacts alter biological structure and so also how impacts may potentially alter the stability and functioning of whole ecosystems. This latter aspect of human impacts brings has our empirically motivated interests in developing practical biomonitoring techniques that span the ecological hierarchy. Our work is theoretical, empirical and experimental, and most often in aquatic ecosystems like streams, lakes and coastal oceans. We are highly collaborative and have worked globally on different ecosystems.

Learn More

Kevin McCann Read More »

Scroll to Top