Keyword: Infectious disease

Siavash Vahidi

A key focus of the group is on the protein degradation machinery that helps to maintain proper level of proteins (protein homeostasis) in Mycobacterium tuberculosis, the causative agent of TB, the world's single largest infectious killer that is annually responsible for 1.5 million deaths. The questions we aim to answer are:
1) What is the assembly mechanism of the M. tuberculosis proteasome core particle and its regulatory particles?
2) What is the role of allostery and long-range interactions in the machinery that tags substrates for proteasomal degradation?
3) How are substrates selected for tagging and degradation?
4) What is the molecular basis of antibiotics that operate by disrupting proteasomal protein degradation?

Learn More

Siavash Vahidi Read More »

Melanie Wills

My research group focuses on the diagnosis, prognosis and treatment of Lyme disease. I focus on different topics within this research theme, including: 1) the various forms that Borrelia (Lyme bacteria) can adopt and their corresponding role in the expression of the disease; 2) the effects of people and bacteria genetics in the expression of of the disease; 3) the development of new diagnostic tools; and, 4) the interactions that people diagnosed with Lyme disease have with the medical system.

Learn More

Melanie Wills Read More »

Rod Merrill

My research is in the general area of protein structure and dynamics and is specifically focused on the biochemistry of bacterial toxins involved in disease and consists of the following projects: Membrane structure of the colicin E1 ion channel; data mining and bioinformatics of bacterial virulence factors; optical spectroscopic approaches to study protein structure and dynamics; enzyme reaction mechanism of the bacterial mono-ADP-ribosyltransferase family; inhibition mechanisms and structural complexes of toxins with inhibitors; and, X-ray structures of protein-protein complexes involving toxins.

Learn More

Rod Merrill Read More »

Stephen Seah

We are interested in microbial enzymes involved in the steroid and aromatic compounds degradation. These enzymes are important for bioremediation of organic pollutants and are potential targets for development of antibiotics against tuberculosis. In collaboration with Dr. Ting Zhou at Agriculture Agri-food Canada, we are isolating and characterizing enzymes capable of detoxifying the mycotoxins, deoxynivalenol and patulin. These mycotoxins contaminate grains and fruit juices.

Learn More

Stephen Seah Read More »

Cezar Khursigara

Dr. Cezar Khursigara's research focuses on understanding how bacterial pathogens respond to their environment to cause disease. They are particularly interested in factors involved in biofilm formation and chronic infection. His research group is taking a multidisciplinary approach to answer fundamental questions related to how bacteria form biofilms to cause persistent infections. By combining advanced systems biology and imaging techniques, his goal is to identify potential therapeutics that can target a broad spectrum of disease-causing bacteria.

Learn More

Cezar Khursigara Read More »

Jennifer Geddes-McAlister

We are interested in characterizing the mechanisms of pathogenesis, adaptation, and survival in fungal and bacterial microbes from a systems biology perspective through mass spectrometry-based quantitative proteomics. Specifically, research in the lab centres around the following areas:
1) Systems biology to elucidate microbial proteome dynamics and interactions;
2) Mechanistic characterization of pathogenic proteins; and
3) Mass spectrometry-based proteomics for drug discovery and repurposing.

Learn More

Jennifer Geddes-McAlister Read More »

Scroll to Top