Keyword: Infectious disease

Priyanka Pundir

We study how eukaryotic cells communicate with microorganisms, focusing on cell surface receptors and their interaction with host and microbe ligands. We work at the intersection of immunology, microbiology, and neurobiology on how G protein-coupled receptors (GPCRs) on mast cells detect interbacterial communication and trigger antibacterial immune defense. We have shown that GPCRs can detect bacterial quorum sensing molecules, which are used by bacteria to coordinate group behaviors like forming biofilms and developing antibiotic resistance. When mast cells detect these signals, they release anti-bacterial mediators that attract other immune cells to sites of infection. Our ultimate goal is to advance knowledge that can lead to new treatments for infectious and inflammatory diseases.

Learn More

Priyanka Pundir Read More »

Siavash Vahidi

A key focus of the group is on the protein degradation machinery that helps to maintain proper level of proteins (protein homeostasis) in Mycobacterium tuberculosis, the causative agent of TB, the world's single largest infectious killer that is annually responsible for 1.5 million deaths. The questions we aim to answer are:
1) What is the assembly mechanism of the M. tuberculosis proteasome core particle and its regulatory particles?
2) What is the role of allostery and long-range interactions in the machinery that tags substrates for proteasomal degradation?
3) How are substrates selected for tagging and degradation?
4) What is the molecular basis of antibiotics that operate by disrupting proteasomal protein degradation?

Learn More

Siavash Vahidi Read More »

Melanie Wills

My research group focuses on the diagnosis, prognosis and treatment of Lyme disease. I focus on different topics within this research theme, including: 1) the various forms that Borrelia (Lyme bacteria) can adopt and their corresponding role in the expression of the disease; 2) the effects of people and bacteria genetics in the expression of of the disease; 3) the development of new diagnostic tools; and, 4) the interactions that people diagnosed with Lyme disease have with the medical system.

Learn More

Melanie Wills Read More »

Stephen Seah

We are interested in microbial enzymes involved in the steroid and aromatic compounds degradation. These enzymes are important for bioremediation of organic pollutants and are potential targets for development of antibiotics against tuberculosis. In collaboration with Dr. Ting Zhou at Agriculture Agri-food Canada, we are isolating and characterizing enzymes capable of detoxifying the mycotoxins, deoxynivalenol and patulin. These mycotoxins contaminate grains and fruit juices.

Learn More

Stephen Seah Read More »

Cezar Khursigara

Dr. Cezar Khursigara's research focuses on understanding how bacterial pathogens respond to their environment to cause disease. They are particularly interested in factors involved in biofilm formation and chronic infection. His research group is taking a multidisciplinary approach to answer fundamental questions related to how bacteria form biofilms to cause persistent infections. By combining advanced systems biology and imaging techniques, his goal is to identify potential therapeutics that can target a broad spectrum of disease-causing bacteria.

Learn More

Cezar Khursigara Read More »

Jennifer Geddes-McAlister

We are interested in characterizing the mechanisms of pathogenesis, adaptation, and survival in fungal and bacterial microbes from a systems biology perspective through mass spectrometry-based quantitative proteomics. Specifically, research in the lab centres around the following areas:
1) Systems biology to elucidate microbial proteome dynamics and interactions;
2) Mechanistic characterization of pathogenic proteins; and
3) Mass spectrometry-based proteomics for drug discovery and repurposing.

Learn More

Jennifer Geddes-McAlister Read More »

Scroll to Top