Keyword: Obesity

Lindsay Robinson

I am interested in understanding the physiological roles and regulation of adipose tissue and skeletal muscle-derived cytokines in mediating metabolic processes in the body. I am particularly interested in the mechanisms by which dietary factors and/or exercise modulate various cytokines and inflammatory mediators implicated in insulin resistance, a key characteristic of obesity and type 2 diabetes. My current research projects are:
1) Regulation of adipose tissue-derived cytokines in integrative metabolism.
2) Effect of n-3 and n-6 fatty acids in the presence and absence of LPS on adipocyte secretory factors and underlying mechanisms.
3) Effect of dietary fatty acids on pro-inflammatory markers in an in vitro murine adipocyte macrophage co-culture model.

Learn More

Lindsay Robinson Read More »

Dave Dyck

My interests lie in the regulation of fat and carbohydrate metabolism in skeletal muscle, with a particular emphasis on the dysregulation that occurs in obesity and diabetes. Several cytokines released from skeletal muscle, including leptin and adiponectin, are known to significantly affect insulin response in peripheral tissues such as muscle. My research has focused on the effects of these adipokines on muscle lipid and carbohydrate metabolism, and particularly, how the muscle becomes resistant to their effects in obese models and with high fat feeding. The interaction of diet and exercise is also a point of interest in terms of the muscle's response to various hormones including insulin, leptin and adiponectin.

Learn More

Dave Dyck Read More »

Ray Lu

My lab focuses on two main axes of research:
1) Unfolded Protein Response and Human Diseases: We study proteins that play key roles in animal stress responses, specifically the Unfolded Protein Response (UPR), which has been linked to animal development, cell differentiation, as well as a variety of human diseases such as Alzheimer’s, diabetes, cancer and viral infection.
2) Molecular Mechanisms of Aging: We are working to establish planarians as a new aging model to test the hypothesis that longevity requires multiplex resistance to stress. We hope to identify genes or alleles that confer such multiplex stress resistance and/or promote longevity.

Learn More

Ray Lu Read More »

David Mutch

Dysfunctional lipid metabolism is a key feature of cardiometabolic diseases, such as obesity and type 2 diabetes. My research program has three primary areas of interest:
First, we are using cell and mouse models to determine how omega-3 fats regulate lipid metabolism. We are investigating how omega-3 fats control adipogenesis, as well as lipogenic, lipolytic, and triglyceride synthesis pathways in adipose tissue and liver.
Second, we are studying how different nutrients regulate omega-3 synthesis in the body using both mouse models and human clinical trials.
Third, we are interested to personalize nutrition to improve human cardiometabolic health. We continue to be active in this area through various national and international collaborations.

Learn More

David Mutch Read More »

Scroll to Top