Keyword: Parkinson's disease

Melanie Alpaugh

The Alpaugh Lab studies the mechanisms and consequences of protein misfolding in neurodegenerative diseases.
Theme 1- Interactions between the blood-brain barrier and misfolded proteins. Protein accumulation and blood-brain barrier break down are common features of diseases such as Alzheimer’s, Parkinson’s and Huntington’s diseases. We aim to understand if these two common disease features are related using a human 3D-cell culture model of the blood-brain barrier and human tissue.
Theme 2- Contributions of huntingtin seeding and spreading to Huntington’s disease. The mutant huntingtin protein displays prion-like properties. The Alpaugh lab is tackling the relevance to Huntington’s disease using tissue from human patients with Huntington’s disease phenocopies and Huntington’s disease.

Learn More

Melanie Alpaugh Read More »

Scott Ryan

While animal models have lead to huge advancements in our understanding of neurobiology, there is controversy over whether overexpression/silencing of gene expression is representative of diverse disease states. Indeed, the lack of availability of primary human neurons has made evaluating the pathological consequences of genomic mutations arduous. The use of human induced pluripotent stem cell (hiPSC) technology overcomes these limitations by providing a source of human neurons from both normal and disease genetic backgrounds. We currently focus on stem cell based models of Parkinson's Disease (PD) to study how mitochondrial stress mechanisms impact on neuronal function in human disease.

Learn More

Scott Ryan Read More »

Philip Millar

The primary aim of my research is to better understand the mechanisms that control, and functional consequences of, sympathetic outflow at rest and during stress in humans with and without cardiovascular disease. To uncover these mechanisms, my laboratory employs direct intra-neural recordings of postganglionic sympathetic traffic, studying both multi- and single-fibre preparations. Additionally, we are also interested in understanding the mechanisms responsible for the large inter-individual variability in blood pressure responses to stress, as well as testing novel interventions to reduce resting blood pressure, a major modifiable risk factor for cardiovascular disease.

Learn More

Philip Millar Read More »

Scroll to Top