Keyword: Protein structure and biochemistry

Jasmin Lalonde

The growth of neurons and their organization into circuits is a tightly controlled process that follows a series of well-defined steps. Once differentiated and integrated into networks, neurons also retain a remarkable capacity to rapidly change the arrangement of their connections in response to activity, a feature that is believed to critically support cognition as well as our ability to learn and retain information for long periods of time. Accumulating evidence strongly suggests that perturbation of the molecular interactions responsible for the growth of neurons, or the capacity of these cells to adequately respond to activity-dependent signals, contributes to the pathophysiology of different brain disorders. Our laboratory uses a multidisciplinary approach to explore these questions.

Learn More

Stephen Seah

We are interested in microbial enzymes involved in the steroid and aromatic compounds degradation. These enzymes are important for bioremediation of organic pollutants and are potential targets for development of antibiotics against tuberculosis. In collaboration with Dr. Ting Zhou at Agriculture Agri-food Canada, we are isolating and characterizing enzymes capable of detoxifying the mycotoxins, deoxynivalenol and patulin. These mycotoxins contaminate grains and fruit juices.

Learn More

Cezar Khursigara

Dr. Cezar Khursigara's research focuses on understanding how bacterial pathogens respond to their environment to cause disease. They are particularly interested in factors involved in biofilm formation and chronic infection. His research group is taking a multidisciplinary approach to answer fundamental questions related to how bacteria form biofilms to cause persistent infections. By combining advanced systems biology and imaging techniques, his goal is to identify potential therapeutics that can target a broad spectrum of disease-causing bacteria.

Learn More

Jennifer Geddes-McAlister

We are interested in characterizing the mechanisms of pathogenesis, adaptation, and survival in fungal and bacterial microbes from a systems biology perspective through mass spectrometry-based quantitative proteomics. Specifically, research in the lab centres around the following areas:
1) Systems biology to elucidate microbial proteome dynamics and interactions;
2) Mechanistic characterization of pathogenic proteins; and
3) Mass spectrometry-based proteomics for drug discovery and repurposing.

Learn More

Wei Zhang

First, we have systematically generated inhibitors and activators for E3 ubiquitin ligases to discover new enzyme catalytic mechanism and new substrates. We continue to develop synthetic peptides and proteins to delineate biochemical mechanisms of E3 ubiquitin ligases.
Second, we showed that structure-based protein engineering enables development of anti-viral reagents for Middle East respiratory syndrome (MERS) coronavirus. Now we started engineering post-translational modifications to probe and rewire DNA damage signaling for cancer therapeutics.
Finally, we created molecular tools to increase CRISPR-Cas9 genome-editing efficiency. Now we are developing new tools as "off-switch" for CRISPR-based gene editing through targeted protein degradation.

Learn More

Georgina Cox

The Cox lab aims to gain a better understanding of the molecular underpinnings of resistance mechanisms. Specifically, we study bacterial efflux systems, which will provide insight into their physiological functions and origins and will also support future drug discovery efforts and antibiotic stewardship. In addition, recognizing the need for innovation in the search for new antibacterial agents, we are exploring novel approaches to control bacterial infections by investigating the inhibition of bacterial adhesion to host cells.

Learn More
Scroll to Top