Research Area: Nutrition

Emma Allen-Vercoe

We currently have several projects in various areas that explore aspects of the gut microbiome and beyond:
1) Understanding how gut microbes are involved in the modulation of disease in colorectal cancer, diabetes, infection, and inflammatory bowel diseases
2) Isolation and characterisation of hunter-gatherer people's gut microbiome in an effort to discover novel microbial species and understand their function
3) Characterisation of the non-bacterial microbes of the human microbiome and their functions
4) Building model systems to study human gut microbes in vitro and in vivo
5) The study of 'oncomicrobes' (in particular, Fusobacterium nucleatum), and the development of colorectal cancer.
6) Translation to the clinic - development of 'microbial ecosystem therapeutics'

Learn More

Alison Duncan

My research is focused on the biological effects of functional foods on chronic disease-related endpoints evaluated in human intervention studies. I have a focus on the agri-food-health continuum with a particular interest in studying the health effects of agri-foods such as soybeans, lentils and beans. I am interested in studies in all life-stages, however am actively involved with the Guelph Family Health Study (focus on families with young children) and with Agri-Food for Healthy Aging (focus on older adults). I am also interested in examining how different sub-groups perceive and consume functional foods as examined through comprehensive questionnaires.

Learn More

David Ma

Currently, there are several major areas of research focus including the study of basic fatty acid metabolism, understanding the association between plasma fatty acids and health outcomes, omega-3 fatty acids in the prevention of breast cancer, and examining determinants of health in the Guelph Family Health Study. In addition, related projects include the study of fats in brain health (concussion, Alzheimer's Disease), fatty liver disease, fatty acid metabolism, bone development and nutrigenomics.

Learn More

David Mutch

Dysfunctional lipid metabolism is a key feature of cardiometabolic diseases, such as obesity and type 2 diabetes. My research program has three primary areas of interest:

First, we are using cell and mouse models to determine how omega-3 fats regulate lipid metabolism. We are investigating how omega-3 fats control adipogenesis, as well as lipogenic, lipolytic, and triglyceride synthesis pathways in adipose tissue and liver.

Second, we are studying how different nutrients regulate omega-3 synthesis in the body using both mouse models and human clinical trials.

Third, we are interested to personalize nutrition to improve human cardiometabolic health (PMID: 30472712, 29400991, 28272299). We continue to be active in this area through various national and international collaborations.

Learn More

Elizabeth Boulding

In eastern Canada, the lumpfish and a North American wrasse, the cunner, significantly reduce adult lice densities on salmon living in marine sea cages. My group's work has the following objectives: 1) determine the best size-class of cunners to use in commercial sea cages; 2) examine variation in lice-cleaning performance among cunners and among lumpfish from different stocks; 3) assess heritable variation in lice eating behaviour; 4) Conduct lice challenges of pedigreed salmon with and without the lice cleaner fish present.
3) Increased sea surface temperatures have allowed larval shore crab to invade western Canadian shores and prey on indigenous snail species. We are identifying genomic changes correlated with adaptation to predators in a 25 year field experiment near Bamfield, BC.

Learn More

Amanda Wright

The role of physical properties in determining the metabolic and health effects of foods is often overlooked. We aim to better understand the relationships between food properties and metabolic response, particularly for dietary lipids. After chemical and structural analyses, real and model food systems are exposed to simulated gastrointestinal conditions using static and dynamic models. This generates insight into how food properties interact with the biochemical and biophysical aspects of digestion to determine nutrient release and absorption. We couple these experimental approaches with human clinical trials to relate material properties and their digestive behavior with metabolic endpoints (e.g. absorption, satiety, inflammation, lipemia, gastrointestinal symptoms).

Learn More
Scroll to Top