Keyword: Kidney disease

Nina Jones

Research in our laboratory is focused on defining eukaryotic signal transduction pathways, and investigating how mutations in components of these pathways can contribute to human disease. Signal transduction is a central process in multicellular organisms that allows for the exchange of informational cues between and within cells. These cues are interpreted by organized networks of protein interactions inside the cell which regulate complex biochemical events, ultimately converting them into biological responses such as growth, migration, differentiation and survival. Cells have evolved a tremendous ability to selectively activate specific downstream pathways, through formation of distinct protein complexes. Understanding the molecular basis of these interactions is therefore a significant challenge in biology, and it is of key importance in defining how certain mutations can lead to pathological conditions such as kidney disease and cancer. Current areas of research include: 1) Signalling pathways controlling kidney podocyte morphology; 2) focal adhesion dynamics in cancer cells; and, 3) characterization of a novel neuronal adaptor protein, ShcD.

Learn More

Nina Jones

Research in our laboratory is focused on defining eukaryotic signal transduction pathways, and investigating how mutations in components of these pathways can contribute to human disease. Signal transduction is a central process in multicellular organisms that allows for the exchange of informational cues between and within cells. These cues are interpreted by organized networks of protein interactions inside the cell which regulate complex biochemical events, ultimately converting them into biological responses such as growth, migration, differentiation and survival. Cells have evolved a tremendous ability to selectively activate specific downstream pathways, through formation of distinct protein complexes. Understanding the molecular basis of these interactions is therefore a significant challenge in biology, and it is of key importance in defining how certain mutations can lead to pathological conditions such as kidney disease and cancer. Current areas of research include: 1) Signalling pathways controlling kidney podocyte morphology; 2) focal adhesion dynamics in cancer cells; and, 3) characterization of a novel neuronal adaptor protein, ShcD.

Learn More
Scroll to Top