Keyword: Microbiome

Matthew Sorbara

Healthy gut microbiota can be disrupted due to antibiotic treatment, intestinal inflammation, or changes in diet. Targeted restoration of the microbiota will require an understanding of how genomic diversity between closely related microbes influences their ability to drive beneficial functions. To address this, our laboratory will use a large collection of whole-genome sequenced isolates to understand how variation between closely related gut isolates alters their ability to prevent pathogen expansion and maintain homeostatic interactions with the mucosal immune system.

Learn More

Matthew Sorbara Read More »

Jen Monk

My students and I aim to understand the mechanistic role(s) of microbial-host intestinal communication. In particular, we focus on how microbial-derived metabolites (from dietary precursors) can influence the integrity of the colonic epithelial barrier (EB), as well as its capacity for defense and repair. The importance of this research lies on not only advancing basic knowledge on the effect of microbial metabolites on gastrointestinal functions, but also on informing the agri-food sector the ways in which the intake of nutrients, biomolecules, and dietary precursors can shape human health.

Learn More

Jen Monk Read More »

Emma Allen-Vercoe

We currently have several projects in various areas that explore aspects of the gut microbiome and beyond:
1) Understanding how gut microbes are involved in the modulation of disease in colorectal cancer, diabetes, infection, and inflammatory bowel diseases
2) Isolation and characterisation of hunter-gatherer people's gut microbiome in an effort to discover novel microbial species and understand their function
3) Characterisation of the non-bacterial microbes of the human microbiome and their functions
4) Building model systems to study human gut microbes in vitro and in vivo
5) The study of 'oncomicrobes' (in particular, Fusobacterium nucleatum), and the development of colorectal cancer.
6) Translation to the clinic - development of 'microbial ecosystem therapeutics'

Learn More

Emma Allen-Vercoe Read More »

Cezar Khursigara

Dr. Cezar Khursigara's research focuses on understanding how bacterial pathogens respond to their environment to cause disease. They are particularly interested in factors involved in biofilm formation and chronic infection. His research group is taking a multidisciplinary approach to answer fundamental questions related to how bacteria form biofilms to cause persistent infections. By combining advanced systems biology and imaging techniques, his goal is to identify potential therapeutics that can target a broad spectrum of disease-causing bacteria.

Learn More

Cezar Khursigara Read More »

Scroll to Top