Keyword: host-pathogen interactions

Priyanka Pundir

We are interested in understanding how mast cells recognize beneficial and pathogenic microbes to maintain tissue homeostasis and educate the immune system. Our lab uses an interdisciplinary approach that combines mouse and microbial genetics, receptor pharmacology, sequencing, multiparameter flow cytometry, microscopy, and infection models to elucidate how the G protein-coupled receptors expressed by mast cells act as sensors of the communication between host and microbes. Our ultimate goal is to guide fundamental knowledge necessary for developing next-generation therapeutics for infectious and inflammatory diseases.

Learn More

Priyanka Pundir Read More »

Matthew Sorbara

Healthy gut microbiota can be disrupted due to antibiotic treatment, intestinal inflammation, or changes in diet. Targeted restoration of the microbiota will require an understanding of how genomic diversity between closely related microbes influences their ability to drive beneficial functions. To address this, our laboratory will use a large collection of whole-genome sequenced isolates to understand how variation between closely related gut isolates alters their ability to prevent pathogen expansion and maintain homeostatic interactions with the mucosal immune system.

Learn More

Matthew Sorbara Read More »

Rebecca Shapiro

To better study the biology and virulence of fungal pathogens, we are developing new genomic technology platforms for diverse fungal species. We are exploiting CRISPR-Cas9 based technologies to revolutionize the way we do high-throughput functional genomic analysis in fungal pathogens. This is enabling us to map large-scale genetic interaction networks, and uncover genetic factors and pathways that mediate important phenotypes associated with pathogenesis, antifungal drug resistance, and other biological processes associated with fungal infectious diseases.

Learn More

Rebecca Shapiro Read More »

Jennifer Geddes-McAlister

We are interested in characterizing the mechanisms of pathogenesis, adaptation, and survival in fungal and bacterial microbes from a systems biology perspective through mass spectrometry-based quantitative proteomics. Specifically, research in the lab centres around the following areas:
1) Systems biology to elucidate microbial proteome dynamics and interactions;
2) Mechanistic characterization of pathogenic proteins; and
3) Mass spectrometry-based proteomics for drug discovery and repurposing.

Learn More

Jennifer Geddes-McAlister Read More »

Scroll to Top