Keyword: Natural resource management

Mehrdad Hajibabaei

Our work spans three research themes:
1) DNA metasystematics: We gather biodiversity data through the analysis of marker genes from bulk samples (water, soil, and sediments). We pioneered this technique for benthic macroinvertebrates, used widely as bioindicators of aquatic ecosystems.
2) Biodiversity transcriptomics: We develop comparative transcritpome-based approaches for non-model organisms to gain insights on evolution of transcriptomes and understand molecular responses at ecological scale.
3) Bioinformatic approaches for biodiversity genomics data: We develop and test taxonomic assignment approaches for many taxonomic groups and marker genes, and develop tools to enhance analysis of metabarcoding and biodiversity genomic data through machine-learning methods and refined analysis.

Learn More

Steve Crawford

My research program spans three themes:
1) Great Lakes Fish Ecology: This includes developmental biology, animal behaviour, fish habitat, effect of exotic species, species-at-risk, fish population and community dynamics, and the response of ecosystems to disturbance.
2) Science in Natural Resource Management: I focus on Indigenous resource management negotiations with Canada, Ontario, as well as Industry and Environmental NGOs.
3) Indigenous-Western Science Knowledge Systems: I critically examine the theoretical and practical basis for engagement between traditional knowledge holders and 'Western' scientists/managers.

Learn More

Steve Newmaster

My research explores biodiversity from different perspectives and scales. We have develop molecular diagnostic tools for plant identification, including herbal product authentication and certification. Also, we contribute to the Plant Barcode of Life, investigating intra and interspecific variation in plants, and incorporate both Indigenous knowledge and DNA-based approaches to understanding diversity. In addition, I have extensively researched the effects of ecosystem management on community structure. Lastly, I am engaged in the scholarship of teaching and learning and have recently looked at 1) learning objects as mechanisms of engagement, 2) active learning within large first year biology classes, and 3) ancient pedagogies.

Learn More

Elizabeth Mandeville

I study evolution in heterogeneous environments, over large geographic ranges, and in the presence of variable species assemblages by using computational approaches and bioinformatics techniques to analyze large, high-resolution genomic datasets. My work revolves around two focal questions: 1) How consistent are evolutionary and ecological outcomes of species interactions? and 2) To what extent are species evolutionarily cohesive across their ranges? Most of the fish species I study are affected by human-mediated disturbances, including species introductions and fragmentation of aquatic habitat by dams. I use large genomic, ecological, and isotopic datasets to understand how evolutionary processes function across ecological contexts.

Learn More

Amy Newman

We study proximate and ultimate questions around stress ecophysiology. We combine field studies and laboratory analyses to examine the persistent effects of early life stress on physiology, behaviour and fitness. We use a variety of approaches from large-scale manipulations in the wild to controlled laboratory experiments. I am excited by integrative questions that span levels of biological organization and students in the lab are encouraged to explore questions from evolutionary, ecological, physiological and molecular perspectives.

Learn More

Malcolm Campbell

As they are literally rooted in place, plants possess remarkable mechanisms that perceive, interpret, and respond to internal and external cues so as to optimise plant growth and development relative to prevailing environment conditions. Despite the incredible diversity in plant forms, the molecular mechanisms that control plant responses to internal and external cues are highly conserved across diverse genera. The timing and localisation of these mechanisms shape plant and development. Our research team aims to gain greater insights into molecular mechanisms that plants employ to convert internal cues and external signals into appropriate adjustments in resource acquisition and allocation, focusing on the role of gene regulation in conditioning these adjustments.

Learn More

Andrew Macdougall

Our main projects center on ecosystem services on Ontario farm landscapes, climate change in the Swedish High-arctic, and drivers of diversity decline in savannas of western North America.

Learn More

Sarah Alderman

Current projects include:
- Mechanistic and functional connections between stress and adult neurogenesis in fish
- Effects of aquatic pollutants on fish physiology, morphology, and performance
- Neuroanatomy and regenerative capacity of the hagfish brain
- Quantitative proteomics as a tool for biomarker discovery and novel insights into animal physiology

Learn More

Elizabeth Boulding

The current rates of environmental change experienced by animal populations are higher than have been experienced over much of fossil record. My laboratory investigates the factors that determine whether a population will adapt to a change in the environment without going extinct. Our current projects are:
1) Invasion biology, comparing scales of local genetic adaptation to exotic predators by prey with high and low dispersal potential.
2) Genomic selection and genome wide association analysis of growth, shape, pathogen resistant and life history traits in Atlantic salmon populations.
3) Assessing heritable variation in biological control of the salmon louse by two species of cleaner fish and co-operative behaviour by their client, Atlantic salmon.

Learn More

Kevin McCann

Generally speaking, we are interested in understanding how biological structure, broadly defined to include structure of all biological forms, mitigates the stability and functioning of ecosystems. This question naturally leads to understanding how human impacts alter biological structure and so also how impacts may potentially alter the stability and functioning of whole ecosystems. This latter aspect of human impacts brings has our empirically motivated interests in developing practical biomonitoring techniques that span the ecological hierarchy. Our work is theoretical, empirical and experimental, and most often in aquatic ecosystems like streams, lakes and coastal oceans. We are highly collaborative and have worked globally on different ecosystems.

Learn More
Scroll to Top