Keyword: Sex-specific issues related to human health and disease

Jeremy Simpson

My lab conducts research on several areas related to cardio-respiratory physiology and pathophysiology. For example, we are studying: 1) how the heart initially adapts to hypertension before the development of contractile dysfunction and heart failure; 2) skeletal and cardiomyocyte cell signalling during normal and hypoxic conditions; 3) proteomic alterations that occur in limb muscles during exercise; 4) key post-translational modifications of myofilament proteins that arise during the development of whole muscle dysfunction as a result of fatigue or ischemia; and, 5) dyastolic dysfunction in various physiological and pathological states, such as aging, sex differences, and models of heart failure.

Learn More

Jeremy Simpson Read More »

David Ma

Currently, there are several major areas of research focus including the study of basic fatty acid metabolism, understanding the association between plasma fatty acids and health outcomes, omega-3 fatty acids in the prevention of breast cancer, and examining determinants of health in the Guelph Family Health Study. In addition, related projects include the study of fats in brain health (concussion, Alzheimer's Disease), fatty liver disease, fatty acid metabolism, bone development and nutrigenomics.

Learn More

David Ma Read More »

Geoff Power

Skeletal muscle is a remarkable tissue which regulates many metabolic processes, generates heat and is the basic motor of locomotion allowing us to meaningfully interact with our environment. When a muscle is activated at various lengths it produces a given predictable amount of force. However, when that muscle is actively lengthened or shortened those predictions go out the window. We actually know very little regarding dynamic muscle contraction. My research program focuses on muscle contractile properties and gaining a deeper understanding of how muscle works. I use altered states to tease out some of these fine muscle details such as muscle fatigue, aging, and training.

Learn More

Geoff Power Read More »

Philip Millar

The primary aim of my research is to better understand the mechanisms that control, and functional consequences of, sympathetic outflow at rest and during stress in humans with and without cardiovascular disease. To uncover these mechanisms, my laboratory employs direct intra-neural recordings of postganglionic sympathetic traffic, studying both multi- and single-fibre preparations. Additionally, we are also interested in understanding the mechanisms responsible for the large inter-individual variability in blood pressure responses to stress, as well as testing novel interventions to reduce resting blood pressure, a major modifiable risk factor for cardiovascular disease.

Learn More

Philip Millar Read More »

Scroll to Top