Research Area: Bioinformatics

Karl Cottenie

In the next 5 years, I will shift my research strategy by consolidating 4 streams of my past research: temporal dynamics, host-symbiont interactions, small mammal metacommunity dynamics, and DNA-based species identification and bioinformatics. I will focus on a study system that combines my past strengths in metacommunity ecology at multiple scales, but will apply them to a novel system: microbial metacommunities nested within a matrix of metacommunity of different host species.

Learn More

Karl Cottenie Read More »

Jim Uniacke

Protein synthesis involves the translation of ribonucleic acid information into proteins, the building blocks of life. The initial step of protein synthesis consists of the eukaryotic translation initiation factor 4E (eIF4E) binding to the 5' cap of mRNAs. However, many cellular stresses repress cap-dependent translation to conserve energy by sequestering eIF4E. This raises a fundamental question in biology as to how proteins are synthesized during periods of cellular stress and eIF4E inhibition. Research in our laboratory will build upon the discovery that cells switch to an alternative cap-binding protein, eIF4E2, to synthesize the bulk of their proteins during periods of oxygen scarcity (hypoxia).

Learn More

Jim Uniacke Read More »

Cortland Griswold

A current focus of our coalescent-based work is the development of models to support inferring historical processes that shape an ecological community, from genes to ecosystem processes. These models have applications across the domains of life, from microbial communities to grasslands. A corollary to this work is theory in support of the interpretation of metagenomic data. In the area of polyploid population genetics, our work is currently focusing on models of multilocus selection, with potential application to understanding the evolution of recombination rates and diploidization.

Learn More

Cortland Griswold Read More »

Andreas Heyland

Dr. Heyland's laboratory uses novel functional genomics approaches to study the endocrine and neuroendocrine systems of aquatic invertebrates. Specifically he investigates the function and evolution of hormonal and neurotransmitter signaling systems in the regulation of development and metamorphosis. His research includes evolutionary development studies of marine invertebrate metamorphosis, eco-toxicogenomic approached to understand endocrine disruption in aquatic ecosystems and water remediation technologies. These projects are integrated with several national and international collaborations ranging form basic scientific work to industry partnerships.

Learn More

Andreas Heyland Read More »

M. Alex Smith

In this lab, we work to better understand the contemporary distribution of hyperdiverse, and often cryptic, species of insects across major ecological gradients in tropical and temperate environments. Our research is built upon projects designed to explore the causes and consequences of biodiversity across elevational, latitudinal and disturbance gradients and builds on long-term collections using phylogenetic, functional and physiological measures. I am committed to teaching, and learning from, diverse individuals and scientists, participating in outreach, improving how we communicate science, and publishing accessible research and data.

Learn More

M. Alex Smith Read More »

Georgina Cox

The Cox lab aims to gain a better understanding of the molecular underpinnings of resistance mechanisms. Specifically, we study bacterial efflux systems, which will provide insight into their physiological functions and origins and will also support future drug discovery efforts and antibiotic stewardship. In addition, recognizing the need for innovation in the search for new antibacterial agents, we are exploring novel approaches to control bacterial infections by investigating the inhibition of bacterial adhesion to host cells.

Learn More

Georgina Cox Read More »

Steffen Graether

The main goal of our research program is to understand how the intrinsically disordered late embryogenesis abundant (LEA) proteins are able to protect plants from damage caused by cold, drought and high salinity. Our main focus has been on dehydrins, a group of abiotic stress response proteins that have been shown to protect plants from damage caused by drought and cold. Dehydrins are interesting in that they are composed of a variable number of conserved motifs that appear to have roles in protection of proteins, membranes and DNA from abiotic damage, as well as roles in localization.

Learn More

Steffen Graether Read More »

Jennifer Geddes-McAlister

We are interested in characterizing the mechanisms of pathogenesis, adaptation, and survival in fungal and bacterial microbes from a systems biology perspective through mass spectrometry-based quantitative proteomics. Specifically, research in the lab centres around the following areas:
1) Systems biology to elucidate microbial proteome dynamics and interactions;
2) Mechanistic characterization of pathogenic proteins; and
3) Mass spectrometry-based proteomics for drug discovery and repurposing.

Learn More

Jennifer Geddes-McAlister Read More »

Scroll to Top