Research Area: Bioinformatics

Mazyar Fallah

I study the neurophysiology of cognitive processes. My research focuses on eye movements and how they interact with cognitive and executive functions. For example, I explore how features are integrated across multiple brain areas to form object representations, how attention and object representations drive eye movements, and how the visual system prioritizes peripersonal space. I am also interested in the networks in the brain that perform all these processes and how they can be impaired due to concussion and subconcussive impacts.

Learn More

Mazyar Fallah Read More »

Mehrdad Hajibabaei

Our work spans three research themes:
1) DNA metasystematics: We gather biodiversity data through the analysis of marker genes from bulk samples (water, soil, and sediments). We pioneered this technique for benthic macroinvertebrates, used widely as bioindicators of aquatic ecosystems.
2) Biodiversity transcriptomics: We develop comparative transcritpome-based approaches for non-model organisms to gain insights on evolution of transcriptomes and understand molecular responses at ecological scale.
3) Bioinformatic approaches for biodiversity genomics data: We develop and test taxonomic assignment approaches for many taxonomic groups and marker genes, and develop tools to enhance analysis of metabarcoding and biodiversity genomic data through machine-learning methods and refined analysis.

Learn More

Mehrdad Hajibabaei Read More »

John Zettel

My current research blends my research backgrounds in biomechanics and visuomotor control to examine how postural control is integrated and coordinated with voluntary movement (e.g. reaching, stepping, whole-body reaching). I am interested in developing an understanding of balance and movement both from a fundamental level, and in application to the immense problem of impaired mobility and falls in older adults and other clinical populations (e.g. stroke).

Learn More

John Zettel Read More »

Terry Van Raay

Many of the signaling pathways that are involved in development are also involved in the onset and progression of disease. As an example, the Wnt signaling pathway is required during many stages of development and in the homeostasis of stem cells in the adult. Perturbation of this pathway in stem cells in the adult often leads to cancer. It is now known that greater than 90% of colorectal cancers are caused by mutations in the Wnt signaling pathway. As this pathway is important for both proper development and disease, I am curious to know how this pathway can turn it self on and off so many times during development and why it fails to turn off in disease. The lab focuses on two negative feedback regulators of Wnt signaling: Nkd1 and Axin2.

Learn More

Terry Van Raay Read More »

George van der Merwe

We study the transcriptomic and proteomic adaptation of yeasts to changing nutrient environments, as well as their domestication and fermentation to better understand yeast performance and potentially develop strategies and predictions of fermentation efficiencies and flavour compound production during alcoholic fermentations. We also look at yeast diversity and the unique flavour compounds that could expand product diversity in the wine, beer and cider industries.

Learn More

George van der Merwe Read More »

Siavash Vahidi

A key focus of the group is on the protein degradation machinery that helps to maintain proper level of proteins (protein homeostasis) in Mycobacterium tuberculosis, the causative agent of TB, the world's single largest infectious killer that is annually responsible for 1.5 million deaths. The questions we aim to answer are:
1) What is the assembly mechanism of the M. tuberculosis proteasome core particle and its regulatory particles?
2) What is the role of allostery and long-range interactions in the machinery that tags substrates for proteasomal degradation?
3) How are substrates selected for tagging and degradation?
4) What is the molecular basis of antibiotics that operate by disrupting proteasomal protein degradation?

Learn More

Siavash Vahidi Read More »

Annette Nassuth

My research group investigates biotic and abiotic stress on plants at the cellular and sub-cellular biochemical and molecular levels. The objective is to identify what changes occur in plant cells upon exposure to stress and which of these changes aid the plant to increase its tolerance to the stress.A major focus currently is the investigation of freezing stress tolerance in grapevines. Winters in Ontario can cause substantial damage to the cultivated grapes used in the Wine Industry, whereas wild grapes have no problems. We try to find out what the molecular basis is for this phenomenon. The ultimate goal is to use this knowledge to improve freezing and drought stress tolerance in the cultivated grapes.

Learn More

Annette Nassuth Read More »

Baozhong Meng

The ultimate goal of my research is to understand viruses and viral diseases for the betterment of agriculture. Our research involves a number of important viruses that infect plants, which include Grapevine rupestris stem pitting-associated virus (GRSPaV), a ubiquitous and important pathogen of grapes worldwide. Current research directions include: Processing and subcellular localization of polyproteins; structure and cellular localization of viral replication complexes; evolution and bio-informatics of grapevine viruses; development of virus-induced gene-silencing vectors ; and, development and application of technologies for the diagnosis of grapevine viruses.

Learn More

Baozhong Meng Read More »

Steve Newmaster

My research explores biodiversity from different perspectives and scales. We have develop molecular diagnostic tools for plant identification, including herbal product authentication and certification. Also, we contribute to the Plant Barcode of Life, investigating intra and interspecific variation in plants, and incorporate both Indigenous knowledge and DNA-based approaches to understanding diversity. In addition, I have extensively researched the effects of ecosystem management on community structure. Lastly, I am engaged in the scholarship of teaching and learning and have recently looked at 1) learning objects as mechanisms of engagement, 2) active learning within large first year biology classes, and 3) ancient pedagogies.

Learn More

Steve Newmaster Read More »

Sally Adamowicz

My work spans five major axes of research:
1) The shape of the Tree of Life, including the relationships amongst species and the factors that influence the shape of this tree.
2) Major transitions in evolution, especially the frequency of transitions, the rate at which reversals occur, and the consequences of such transitions for molecular evolutionary patterns and speciation rates.
3) Evolutionary trends, with a focus on whether there are large-scale patterns in the history of life.
4) The diversity and integrity of freshwater ecosystems, including the diversity, distributions, traits, and origins of species.
5) The diversity of polar life, which I study using DNA barcoding to discover the true extent of arctic species diversity.

Learn More

Sally Adamowicz Read More »

Rod Merrill

My research is in the general area of protein structure and dynamics and is specifically focused on the biochemistry of bacterial toxins involved in disease and consists of the following projects: Membrane structure of the colicin E1 ion channel; data mining and bioinformatics of bacterial virulence factors; optical spectroscopic approaches to study protein structure and dynamics; enzyme reaction mechanism of the bacterial mono-ADP-ribosyltransferase family; inhibition mechanisms and structural complexes of toxins with inhibitors; and, X-ray structures of protein-protein complexes involving toxins.

Learn More

Rod Merrill Read More »

Jaideep Mathur

Our lab works on three major areas of plant biology:
1) Cytoskeleton & Cell Morphogenesis: We study the pivotal role played by the cytoskeleton in cell shape development in higher plants.
2) Live Cell Visualization & Organelle Dynamics: We dissect the response hierarchy and localized co-operation between plastids, mitochondria and peroxisomes and also between the actin and microtubule components of the cytoskeleton during differential growth in higher plant cells.
3) Plant Interactions: We document the earliest intracellular responses of plant cells to diverse environmental stimuli.

Learn More

Jaideep Mathur Read More »

Michael Emes

Much of our current effort is focused on understanding the regulation of starch synthesis in storage tissues such as the developing seeds of cereals. Starch is the major determinant of yield in such crops, and has wide application in both the food and non-food industries, yet there remain a huge number of unknowns in what limits the production and structure of this important glucan polymer. There is also an increasing realization that different types of starch provide benefits for human health. Our research covers cereals such as maize, barley, rice, and wheat, as well as the model organism Arabidopsis thaliana. I lead a large, interdisciplinary team whose expertise includes plant biochemistry, genetics, molecular biology, microbiology, human physiology, and nutrition.

Learn More

Michael Emes Read More »

Joseph Colasanti

One of the fundamental questions in plant biology concerns the nature of the signals that bring about the transition from vegetative to reproductive growth. My research is aimed at characterizing the developmental signals that cause plants to flower. The primary focus of this work is the maize indeterminate gene (id1). Maize plants that lack id1 function flower extremely late, or not at all, and they exhibit abnormal flower development. The ID1 protein contains zinc-finger motifs, suggesting that it regulates the expression of other genes. Expression analysis reveals that id1 mRNA is expressed only in leaf tissue, suggesting that ID1 acts by controlling the production of leaf-derived signals that mediate the transition to flowering.

Learn More

Joseph Colasanti Read More »

Mark Baker

My lab aims to understand 1) the molecular genetic mechanisms of recombination in mammalian cells; 2) how defects in recombination contribute to tumorigenesis; and, 3) the nature of recombination hotspots. We are presently researching questions pertaining to: the mechanism and frequency of recombination in mammalian cells; the role of large palindromes in promoting recombination; mammalian heteroduplex DNA formation and repair; genetics of strand invasion and 3' end polymerization; how DNA sequences act to stimulate recombination; non-crossover mechanisms of homologous recombination; the genetic control of recombination.

Learn More

Mark Baker Read More »

Elizabeth Mandeville

I study evolution in heterogeneous environments, over large geographic ranges, and in the presence of variable species assemblages by using computational approaches and bioinformatics techniques to analyze large, high-resolution genomic datasets. My work revolves around two focal questions: 1) How consistent are evolutionary and ecological outcomes of species interactions? and 2) To what extent are species evolutionarily cohesive across their ranges? Most of the fish species I study are affected by human-mediated disturbances, including species introductions and fragmentation of aquatic habitat by dams. I use large genomic, ecological, and isotopic datasets to understand how evolutionary processes function across ecological contexts.

Learn More

Elizabeth Mandeville Read More »

Ryan Gregory

My lab studies:
1) Large-scale genome evolution, with a focus on the "C-value enigma," transposable elements, and whole-genome duplications.
2) DNA quantification methods to measure nuclear DNA content.
3) DNA-based methods for species identification and questions in evolutionary biology to understand how biological diversity arises at all levels.
4) Genome size evolution to understand the operation of natural selection and other evolutionary principles.
5) The interface between Integrative Genomics and Evolutionary Biology, otherwise disconnected fields within the biological sciences.

Learn More

Ryan Gregory Read More »

Jinzhong Fu

My recent research includes detecting genetic and phenotypic variations of a common toad (Bufo gargarizans) along elevational gradients, establishing associations between them, and understanding how these variations may have contributed to the adaptation process. I am also studying the Phrynocephalus lizards, particularly their signal evolution, special adaptation to high-elevation environment (5000m), and population genetics and speciation. I also plan to return to one of my favorite research topics, the evolution of unisexuality in the Caucasian rock lizards (Darevskia).

Learn More

Jinzhong Fu Read More »

Jasmin Lalonde

The growth of neurons and their organization into circuits is a tightly controlled process that follows a series of well-defined steps. Once differentiated and integrated into networks, neurons also retain a remarkable capacity to rapidly change the arrangement of their connections in response to activity, a feature that is believed to critically support cognition as well as our ability to learn and retain information for long periods of time. Accumulating evidence strongly suggests that perturbation of the molecular interactions responsible for the growth of neurons, or the capacity of these cells to adequately respond to activity-dependent signals, contributes to the pathophysiology of different brain disorders. Our laboratory uses a multidisciplinary approach to explore these questions.

Learn More

Jasmin Lalonde Read More »

Matthew Kimber

For bacteria, survival requires evading detection. Pathogens must evade their host, but all bacteria need to avoid being targeted by phages. Gram negative bacteria’s survival depends on lipopolysaccharide and capsule – highly complex carbohydrate molecules that coat their outer surface. The enzymes that produce these molecules are complex, drawing on a large set of basic modules but then tweaking and combining them into new organizations that accomplish unique ends. My lab is focused on understanding how the structures and large-scale architectures of these enzymes create the enormous variety of unique custom carbohydrates observed in nature. To this end, we use crystallography, enzymology, and a variety of biophysical assays and bioinformatics tools to better understand these proteins.

Learn More

Matthew Kimber Read More »

Krassimir Yankulov

We use the budding yeast S.cerevisiae as a model organism to ask how established chromatin structure is preserved or changed during repetitive rounds of DNA replication, and how these structures are transmitted to daughter cells. We study the activity of chromatin factors that are highly conserved in all eukaryotes. Our specific focus is on cell-to-cell variations in gene expression. Most of these variations are mediated by chromatin. We know little about the mechanisms that confer these changes.

Learn More

Krassimir Yankulov Read More »

Rebecca Shapiro

To better study the biology and virulence of fungal pathogens, we are developing new genomic technology platforms for diverse fungal species. We are exploiting CRISPR-Cas9 based technologies to revolutionize the way we do high-throughput functional genomic analysis in fungal pathogens. This is enabling us to map large-scale genetic interaction networks, and uncover genetic factors and pathways that mediate important phenotypes associated with pathogenesis, antifungal drug resistance, and other biological processes associated with fungal infectious diseases.

Learn More

Rebecca Shapiro Read More »

Robert Hanner

Molecular biodiversity research and highly qualified personnel training are lab focal points. Using field and lab-based methods together with bioinformatic tools and statistical modelling approaches, we study the patterns and drivers of species habitat occupancy, community assembly and food web ecology. This information is central to addressing a variety of questions pertaining to biodiversity conservation, environmental effects monitoring and food security. We also contribute to the development of standard methods and best practices necessary to enhance receptor uptake capacity for a variety of partners including indigenous peoples, industry, governmental as well as non-governmental organizations, and other citizen science initiatives.

Learn More

Robert Hanner Read More »

Emma Allen-Vercoe

We currently have several projects in various areas that explore aspects of the gut microbiome and beyond:
1) Understanding how gut microbes are involved in the modulation of disease in colorectal cancer, diabetes, infection, and inflammatory bowel diseases
2) Isolation and characterisation of hunter-gatherer people's gut microbiome in an effort to discover novel microbial species and understand their function
3) Characterisation of the non-bacterial microbes of the human microbiome and their functions
4) Building model systems to study human gut microbes in vitro and in vivo
5) The study of 'oncomicrobes' (in particular, Fusobacterium nucleatum), and the development of colorectal cancer.
6) Translation to the clinic - development of 'microbial ecosystem therapeutics'

Learn More

Emma Allen-Vercoe Read More »

Paul Hebert

Morphological studies have provided an outline of biodiversity, but are incapable of surveying, managing and protecting it on a planetary scale. By exploiting two technologies that are gaining power exponentially – DNA sequencing and computational capacity – my research promises an ever-accelerating capacity to monitor and know life. In particular, I aim to automate species identification and discovery, and to employ this capacity to answer longstanding scientific questions. Automation is possible because sequence diversity in short, standardized gene regions (DNA barcodes) enables fast, cheap, and accurate species discrimination. New instruments can inexpensively gather millions of DNA sequences, enabling surveys of organismal diversity at speeds and scales that have been impossible.

Learn More

Paul Hebert Read More »

Scroll to Top