Research Area: Bioinformatics

Scott Ryan

While animal models have lead to huge advancements in our understanding of neurobiology, there is controversy over whether overexpression/silencing of gene expression is representative of diverse disease states. Indeed, the lack of availability of primary human neurons has made evaluating the pathological consequences of genomic mutations arduous. The use of human induced pluripotent stem cell (hiPSC) technology overcomes these limitations by providing a source of human neurons from both normal and disease genetic backgrounds. We currently focus on stem cell based models of Parkinson's Disease (PD) to study how mitochondrial stress mechanisms impact on neuronal function in human disease.

Learn More

Scott Ryan Read More »

David Mutch

Dysfunctional lipid metabolism is a key feature of cardiometabolic diseases, such as obesity and type 2 diabetes. My research program has three primary areas of interest:
First, we are using cell and mouse models to determine how omega-3 fats regulate lipid metabolism. We are investigating how omega-3 fats control adipogenesis, as well as lipogenic, lipolytic, and triglyceride synthesis pathways in adipose tissue and liver.
Second, we are studying how different nutrients regulate omega-3 synthesis in the body using both mouse models and human clinical trials.
Third, we are interested to personalize nutrition to improve human cardiometabolic health. We continue to be active in this area through various national and international collaborations.

Learn More

David Mutch Read More »

Andreas Heyland

Dr. Heyland's laboratory uses novel functional genomics approaches to study the endocrine and neuroendocrine systems of aquatic invertebrates. Specifically he investigates the function and evolution of hormonal and neurotransmitter signaling systems in the regulation of development and metamorphosis. His research includes evolutionary development studies of marine invertebrate metamorphosis, eco-toxicogenomic approached to understand endocrine disruption in aquatic ecosystems and water remediation technologies. These projects are integrated with several national and international collaborations ranging form basic scientific work to industry partnerships.

Learn More

Andreas Heyland Read More »

Cortland Griswold

A current focus of our coalescent-based work is the development of models to support inferring historical processes that shape an ecological community, from genes to ecosystem processes. These models have applications across the domains of life, from microbial communities to grasslands. A corollary to this work is theory in support of the interpretation of metagenomic data. In the area of polyploid population genetics, our work is currently focusing on models of multilocus selection, with potential application to understanding the evolution of recombination rates and diploidization.

Learn More

Cortland Griswold Read More »

Jim Uniacke

Protein synthesis involves the translation of ribonucleic acid information into proteins, the building blocks of life. The initial step of protein synthesis consists of the eukaryotic translation initiation factor 4E (eIF4E) binding to the 5' cap of mRNAs. However, many cellular stresses repress cap-dependent translation to conserve energy by sequestering eIF4E. This raises a fundamental question in biology as to how proteins are synthesized during periods of cellular stress and eIF4E inhibition. Research in our laboratory will build upon the discovery that cells switch to an alternative cap-binding protein, eIF4E2, to synthesize the bulk of their proteins during periods of oxygen scarcity (hypoxia).

Learn More

Jim Uniacke Read More »

Karl Cottenie

In the next 5 years, I will shift my research strategy by consolidating 4 streams of my past research: temporal dynamics, host-symbiont interactions, small mammal metacommunity dynamics, and DNA-based species identification and bioinformatics. I will focus on a study system that combines my past strengths in metacommunity ecology at multiple scales, but will apply them to a novel system: microbial metacommunities nested within a matrix of metacommunity of different host species.

Learn More

Karl Cottenie Read More »

Elizabeth Boulding

The current rates of environmental change experienced by animal populations are higher than have been experienced over much of fossil record. My laboratory investigates the factors that determine whether a population will adapt to a change in the environment without going extinct. Our current projects are:
1) Invasion biology, comparing scales of local genetic adaptation to exotic predators by prey with high and low dispersal potential.
2) Genomic selection and genome wide association analysis of growth, shape, pathogen resistant and life history traits in Atlantic salmon populations.
3) Assessing heritable variation in biological control of the salmon louse by two species of cleaner fish and co-operative behaviour by their client, Atlantic salmon.

Learn More

Elizabeth Boulding Read More »

M. Alex Smith

In this lab, we work to better understand the contemporary distribution of hyperdiverse, and often cryptic, species of insects across major ecological gradients in tropical and temperate environments. Our research is built upon projects designed to explore the causes and consequences of biodiversity across elevational, latitudinal and disturbance gradients and builds on long-term collections using phylogenetic, functional and physiological measures. I am committed to teaching, and learning from, diverse individuals and scientists, participating in outreach, improving how we communicate science, and publishing accessible research and data.

Learn More

M. Alex Smith Read More »

Georgina Cox

The Cox lab aims to gain a better understanding of the molecular underpinnings of resistance mechanisms. Specifically, we study bacterial efflux systems, which will provide insight into their physiological functions and origins and will also support future drug discovery efforts and antibiotic stewardship. In addition, recognizing the need for innovation in the search for new antibacterial agents, we are exploring novel approaches to control bacterial infections by investigating the inhibition of bacterial adhesion to host cells.

Learn More

Georgina Cox Read More »

Steffen Graether

The main goal of our research program is to understand how the intrinsically disordered late embryogenesis abundant (LEA) proteins are able to protect plants from damage caused by cold, drought and high salinity. Our main focus has been on dehydrins, a group of abiotic stress response proteins that have been shown to protect plants from damage caused by drought and cold. Dehydrins are interesting in that they are composed of a variable number of conserved motifs that appear to have roles in protection of proteins, membranes and DNA from abiotic damage, as well as roles in localization.

Learn More

Steffen Graether Read More »

Wei Zhang

First, we have systematically generated inhibitors and activators for E3 ubiquitin ligases to discover new enzyme catalytic mechanism and new substrates. We continue to develop synthetic peptides and proteins to delineate biochemical mechanisms of E3 ubiquitin ligases.
Second, we showed that structure-based protein engineering enables development of anti-viral reagents for Middle East respiratory syndrome (MERS) coronavirus. Now we started engineering post-translational modifications to probe and rewire DNA damage signaling for cancer therapeutics.
Finally, we created molecular tools to increase CRISPR-Cas9 genome-editing efficiency. Now we are developing new tools as "off-switch" for CRISPR-based gene editing through targeted protein degradation.

Learn More

Wei Zhang Read More »

Jennifer Geddes-McAlister

We are interested in characterizing the mechanisms of pathogenesis, adaptation, and survival in fungal and bacterial microbes from a systems biology perspective through mass spectrometry-based quantitative proteomics. Specifically, research in the lab centres around the following areas:
1) Systems biology to elucidate microbial proteome dynamics and interactions;
2) Mechanistic characterization of pathogenic proteins; and
3) Mass spectrometry-based proteomics for drug discovery and repurposing.

Learn More

Jennifer Geddes-McAlister Read More »

Scroll to Top