Research Area: Exercise science and biomechanics

Lawrence Spriet

Dr. Spriet's basic research examines how skeletal muscle generates the large amounts of energy needed to exercise and compete in work and sport situations. The pathways that metabolize carbohydrate and lipid as fuel to produce energy are studied in human skeletal muscle. His practical research examines whether compounds that are purported to be "ergogenic" or work enhancing agents actually augment muscle metabolism and/or improve human performance (e.g. blood doping, creatine, carnitine, pyruvate, taurine, caffeine and omega-3 fatty acids). He also conducts hydration/sweat testing and research aimed at counteracting the effects of dehydration in athletes engaging in stop-and-go sports like ice hockey, basketball, and soccer.

Learn More

Lawrence Spriet Read More »

John Zettel

My current research blends my research backgrounds in biomechanics and visuomotor control to examine how postural control is integrated and coordinated with voluntary movement (e.g. reaching, stepping, whole-body reaching). I am interested in developing an understanding of balance and movement both from a fundamental level, and in application to the immense problem of impaired mobility and falls in older adults and other clinical populations (e.g. stroke).

Learn More

John Zettel Read More »

Coral Murrant

My main research focus centres around the issue of how contracting skeletal muscle can communicate with blood vessels in order to ensure adequate blood flow to the working skeletal muscle cells. There is a direct relationship between skeletal muscle metabolic rate and blood flow. This type of relationship requires that active skeletal muscle cells communicate their need for blood flow to the cells of the vasculature, endothelial cells and vascular smooth muscle cells, and that these cells alter their function in order to ensure the proper blood flow delivery. I am interested in this intercellular communication.

Learn More

Coral Murrant Read More »

Lindsay Robinson

I am interested in understanding the physiological roles and regulation of adipose tissue and skeletal muscle-derived cytokines in mediating metabolic processes in the body. I am particularly interested in the mechanisms by which dietary factors and/or exercise modulate various cytokines and inflammatory mediators implicated in insulin resistance, a key characteristic of obesity and type 2 diabetes. My current research projects are:
1) Regulation of adipose tissue-derived cytokines in integrative metabolism.
2) Effect of n-3 and n-6 fatty acids in the presence and absence of LPS on adipocyte secretory factors and underlying mechanisms.
3) Effect of dietary fatty acids on pro-inflammatory markers in an in vitro murine adipocyte macrophage co-culture model.

Learn More

Lindsay Robinson Read More »

Jeremy Simpson

My lab conducts research on several areas related to cardio-respiratory physiology and pathophysiology. For example, we are studying: 1) how the heart initially adapts to hypertension before the development of contractile dysfunction and heart failure; 2) skeletal and cardiomyocyte cell signalling during normal and hypoxic conditions; 3) proteomic alterations that occur in limb muscles during exercise; 4) key post-translational modifications of myofilament proteins that arise during the development of whole muscle dysfunction as a result of fatigue or ischemia; and, 5) dyastolic dysfunction in various physiological and pathological states, such as aging, sex differences, and models of heart failure.

Learn More

Jeremy Simpson Read More »

Lori Vallis

To date, my research program has focused on strategies used to execute safe movement during adapted locomotor tasks (steering, obstacle circumvention, obstacle stepping) and the role of vision in these tasks. I am also interested in exploring the impact of cognitive or brain function on locomotor control. Given the commonness of dual tasking in our daily living, I hope to map patterns of cognitive-locomotor interference for multiple adapted locomotor (e.g. obstacle circumvention) and cognitive activities (e.g. visuo-spatial cognitive tasks) and ascertain optimal training strategies for dual-task performance.

Learn More

Lori Vallis Read More »

Leah Bent

The primary goals of my research program are 1) to understand where posture is controlled 2) to understand what sensory information contributes to successful movement and equilibrium.
By investigating these two key questions I believe we will have a better understanding of how sensory decline contributes to a loss of mobility as we age. My research program involves two key areas of study:
1) To perform direct recordings from sensory afferents and motor efferents in awake human subjects to investigate sensory contributions to movement, balance control, and reflex responses.
2) To elicit balance perturbations to test the function of these reflex loops, and sensory contributions to the maintenance of equilibrium and postural control.

Learn More

Leah Bent Read More »

Dave Dyck

My interests lie in the regulation of fat and carbohydrate metabolism in skeletal muscle, with a particular emphasis on the dysregulation that occurs in obesity and diabetes. Several cytokines released from skeletal muscle, including leptin and adiponectin, are known to significantly affect insulin response in peripheral tissues such as muscle. My research has focused on the effects of these adipokines on muscle lipid and carbohydrate metabolism, and particularly, how the muscle becomes resistant to their effects in obese models and with high fat feeding. The interaction of diet and exercise is also a point of interest in terms of the muscle's response to various hormones including insulin, leptin and adiponectin.

Learn More

Dave Dyck Read More »

Graham Holloway

My research is primarily focused on understanding the regulation of mitochondrial bioenergetics, with a particular interest in studying fatty acid oxidation (breakdown of fat yielding energy) in skeletal and cardiac muscle. We also study human exercise performance as well as type 2 diabetes, heart failure, diabetic cardiomyopathy and various neuropathologies, all conditions that have been affiliated with alterations in mitochondria as a key event in the progression and/or development of the disease.

Learn More

Graham Holloway Read More »

John Srbely

My research program adopts a broad and integrative approach to the study of chronic musculoskeletal pain, incorporating both basic and clinical sciences. A major arm to my research program is investigating the underlying pathophysiologic mechanisms using both animal and human models. My research also aims to advance reliable diagnostic criteria (imaging, biomarkers) and physical assessment techniques (quantitative sensory testing, electromyography) that enable effective and reliable treatment and management strategies. By emphasizing transdisciplinary and multi-institutional collaborations, my research program will continue to inform future clinical and experimental initiatives in the field of chronic musculoskeletal pain.

Learn More

John Srbely Read More »

Geoff Power

Skeletal muscle is a remarkable tissue which regulates many metabolic processes, generates heat and is the basic motor of locomotion allowing us to meaningfully interact with our environment. When a muscle is activated at various lengths it produces a given predictable amount of force. However, when that muscle is actively lengthened or shortened those predictions go out the window. We actually know very little regarding dynamic muscle contraction. My research program focuses on muscle contractile properties and gaining a deeper understanding of how muscle works. I use altered states to tease out some of these fine muscle details such as muscle fatigue, aging, and training.

Learn More

Geoff Power Read More »

Jamie Burr

Our research centres on the application of physical activity and other acute/chronic perturbations to human physiology to understand how and why the body adapts to these stresses. We take an integrative systems approach, with our work focusing on interventions and assessments of cardiovascular, respiratory and muscular physiology. Specific focus areas include projects to understand the effects peripheral blood flow manipulation, the consequences of particularly stressful exercise, and novel training methods to optimize targetted physiological adaptations. From a health perspective, we are interested in understanding how exercise can be used to prevent and control risk factors for cardiovascular and cardiometabolic disease.

Learn More

Jamie Burr Read More »

John F. Dawson

Prof. Dawson studies the impact of inherited changes in heart muscle proteins to understand what is going wrong in patients with heart diseases so that we can develop specific strategies to treat the problem. His research takes the research from molecules to organisms, studying the biochemistry of proteins and the development and physiology of zebrafish with changes in their hearts reflecting those seen in people with diseases.
Prof. Dawson's education research focuses on learning outcome assessment in general and the development, implementation, and assessment of critical thinking through higher education science curricula in particular.

Learn More

John F. Dawson Read More »

Stephen Brown

Our research is dedicated to understanding mechanisms that dictate healthy function of the human spine, and ultimately the causes and consequences of low back injury and pain. To do this we study the mechanics and physiology of the lumbar spine and its musculature. We use both human and animal models to understand different aspects of how spine movement is achieved and what "normal" movement looks like, the role of muscle in producing this movement and stabilizing the spine, and how the spine and muscle both adapt to injury and how they can be rehabilitated from injury.

Learn More

Stephen Brown Read More »

Philip Millar

The primary aim of my research is to better understand the mechanisms that control, and functional consequences of, sympathetic outflow at rest and during stress in humans with and without cardiovascular disease. To uncover these mechanisms, my laboratory employs direct intra-neural recordings of postganglionic sympathetic traffic, studying both multi- and single-fibre preparations. Additionally, we are also interested in understanding the mechanisms responsible for the large inter-individual variability in blood pressure responses to stress, as well as testing novel interventions to reduce resting blood pressure, a major modifiable risk factor for cardiovascular disease.

Learn More

Philip Millar Read More »

Scroll to Top