Research Area: Climate change

Ryan Norris

Research in my lab is focused on the behaviour, ecology, and conservation of animals living in seasonal environments. Much of our field work is conducted on songbirds and butterflies but also includes past and present studies on salamanders, fruit flies, nightjars, seabirds, and domestic cats. We use both observational and experimental approaches, often combining these with emerging tracking technologies, to understand factors influencing variation in fitness and population abundance. Our two primary long-term studies are on Canada jays in Algonquin Park, ON (50+ yrs) and Savannah sparrows on Kent Island, NB (30+ yrs).

Learn More

Ryan Norris Read More »

Joseph Colasanti

One of the fundamental questions in plant biology concerns the nature of the signals that bring about the transition from vegetative to reproductive growth. My research is aimed at characterizing the developmental signals that cause plants to flower. The primary focus of this work is the maize indeterminate gene (id1). Maize plants that lack id1 function flower extremely late, or not at all, and they exhibit abnormal flower development. The ID1 protein contains zinc-finger motifs, suggesting that it regulates the expression of other genes. Expression analysis reveals that id1 mRNA is expressed only in leaf tissue, suggesting that ID1 acts by controlling the production of leaf-derived signals that mediate the transition to flowering.

Learn More

Joseph Colasanti Read More »

John Fryxell

Recent work has involved herbivores and carnivores movement ecology in Serengeti, woodland caribou, wolves, and moose in northern Ontario, and both wild and Norwegian reindeer. We conduct detailed field and experimental studies of both behavioural and demographic responses to landscape heterogeneity and compare these with theoretical models. As part of the Food from Thought research program, we are also evaluating the impact of anthropogenic stressors (nutrient additions due to fertilizer run-off, pesticide application, and temperature increase due to global climate change) on phytoplankton and zooplankton populations in massive aquatic mesocosms and the effect of marginal land restoration (prairies, wetlands, and secondary forest) on arthropod biodiversity using DNA meta-barcoding.

Learn More

John Fryxell Read More »

Andreas Heyland

Dr. Heyland's laboratory uses novel functional genomics approaches to study the endocrine and neuroendocrine systems of aquatic invertebrates. Specifically he investigates the function and evolution of hormonal and neurotransmitter signaling systems in the regulation of development and metamorphosis. His research includes evolutionary development studies of marine invertebrate metamorphosis, eco-toxicogenomic approached to understand endocrine disruption in aquatic ecosystems and water remediation technologies. These projects are integrated with several national and international collaborations ranging form basic scientific work to industry partnerships.

Learn More

Andreas Heyland Read More »

Brian Husband

My research program investigates the ecological and evolutionary processes operating in plant populations, both wild and domesticated. Much of our work is conducted through the lens of plant reproductive systems, which control the quantity and quality of sperm and eggs, patterns of mating, and ultimately the transmission of genetic variation from one generation to the next. Current research projects include: 1) mating system variation and evolution, 2) polyploid speciation, 3) genetic and phenotypic consequences of whole genome duplication; 4) biology of small populations, and 5) impacts of hybridization between introduced species and endangered congeners. We work on a variety of study systems, including Arabidopsis, apple, strawberry, fireweed, American chestnut, and mulberry.

Learn More

Brian Husband Read More »

Elizabeth Boulding

The current rates of environmental change experienced by animal populations are higher than have been experienced over much of fossil record. My laboratory investigates the factors that determine whether a population will adapt to a change in the environment without going extinct. Our current projects are:
1) Invasion biology, comparing scales of local genetic adaptation to exotic predators by prey with high and low dispersal potential.
2) Genomic selection and genome wide association analysis of growth, shape, pathogen resistant and life history traits in Atlantic salmon populations.
3) Assessing heritable variation in biological control of the salmon louse by two species of cleaner fish and co-operative behaviour by their client, Atlantic salmon.

Learn More

Elizabeth Boulding Read More »

Todd Gillis

Ongoing projects include:
1) Examining cardiac remodeling in zebrafish and trout in response to thermal acclimation.
2) Characterizing the role of the troponin complex in regulating the function of striated muscle.
3) Examining the function of the hagfish heart during prolonged anoxia exposure.
4) Examining the change in diaphragm function during the onset of heart failure.
5) Characterizing how bitumen exposure of sockeye salmon early life stages influences cardiac development and aerobic fitness.

Learn More

Todd Gillis Read More »

M. Alex Smith

In this lab, we work to better understand the contemporary distribution of hyperdiverse, and often cryptic, species of insects across major ecological gradients in tropical and temperate environments. Our research is built upon projects designed to explore the causes and consequences of biodiversity across elevational, latitudinal and disturbance gradients and builds on long-term collections using phylogenetic, functional and physiological measures. I am committed to teaching, and learning from, diverse individuals and scientists, participating in outreach, improving how we communicate science, and publishing accessible research and data.

Learn More

M. Alex Smith Read More »

Kevin McCann

Generally speaking, we are interested in understanding how biological structure, broadly defined to include structure of all biological forms, mitigates the stability and functioning of ecosystems. This question naturally leads to understanding how human impacts alter biological structure and so also how impacts may potentially alter the stability and functioning of whole ecosystems. This latter aspect of human impacts brings has our empirically motivated interests in developing practical biomonitoring techniques that span the ecological hierarchy. Our work is theoretical, empirical and experimental, and most often in aquatic ecosystems like streams, lakes and coastal oceans. We are highly collaborative and have worked globally on different ecosystems.

Learn More

Kevin McCann Read More »

Scroll to Top