Department: Integrative Biology

Brian Husband

My research program investigates the ecological and evolutionary processes operating in plant populations, both wild and domesticated. Much of our work is conducted through the lens of plant reproductive systems, which control the quantity and quality of sperm and eggs, patterns of mating, and ultimately the transmission of genetic variation from one generation to the next. Current research projects include: 1) mating system variation and evolution, 2) polyploid speciation, 3) genetic and phenotypic consequences of whole genome duplication; 4) biology of small populations, and 5) impacts of hybridization between introduced species and endangered congeners. We work on a variety of study systems, including Arabidopsis, apple, strawberry, fireweed, American chestnut, and mulberry.

Learn More

Karl Cottenie

In the next 5 years, I will shift my research strategy by consolidating 4 streams of my past research: temporal dynamics, host-symbiont interactions, small mammal metacommunity dynamics, and DNA-based species identification and bioinformatics. I will focus on a study system that combines my past strengths in metacommunity ecology at multiple scales, but will apply them to a novel system: microbial metacommunities nested within a matrix of metacommunity of different host species.

Learn More

Elizabeth Boulding

The current rates of environmental change experienced by animal populations are higher than have been experienced over much of fossil record. My laboratory investigates the factors that determine whether a population will adapt to a change in the environment without going extinct. Our current projects are:
1) Invasion biology, comparing scales of local genetic adaptation to exotic predators by prey with high and low dispersal potential.
2) Genomic selection and genome wide association analysis of growth, shape, pathogen resistant and life history traits in Atlantic salmon populations.
3) Assessing heritable variation in biological control of the salmon louse by two species of cleaner fish and co-operative behaviour by their client, Atlantic salmon.

Learn More

Georgia Mason

Our research typically involves assessing animals' preferences for and responses to 'enriched' housing conditions that are more complex and naturalistic than the standard norms; investigating abnormal behaviours like stereotypic pacing; validating potential welfare indicators (e.g. facial expressions), and we also analyse multi-species datasets to looks for species-level welfare risk and protective factors. We have worked or are working with mink, rats, mice, rhesus monkeys and zebra fish; and with large datasets from elephants, Carnivora, parrots and lemurs.

Learn More

Todd Gillis

Ongoing projects include:
1) Examining cardiac remodeling in zebrafish and trout in response to thermal acclimation.
2) Characterizing the role of the troponin complex in regulating the function of striated muscle.
3) Examining the function of the hagfish heart during prolonged anoxia exposure.
4) Examining the change in diaphragm function during the onset of heart failure.
5) Characterizing how bitumen exposure of sockeye salmon early life stages influences cardiac development and aerobic fitness.

Learn More

M. Alex Smith

In this lab, we work to better understand the contemporary distribution of hyperdiverse, and often cryptic, species of insects across major ecological gradients in tropical and temperate environments. Our research is built upon projects designed to explore the causes and consequences of biodiversity across elevational, latitudinal and disturbance gradients and builds on long-term collections using phylogenetic, functional and physiological measures. I am committed to teaching, and learning from, diverse individuals and scientists, participating in outreach, improving how we communicate science, and publishing accessible research and data.

Learn More

Kevin McCann

Generally speaking, we are interested in understanding how biological structure, broadly defined to include structure of all biological forms, mitigates the stability and functioning of ecosystems. This question naturally leads to understanding how human impacts alter biological structure and so also how impacts may potentially alter the stability and functioning of whole ecosystems. This latter aspect of human impacts brings has our empirically motivated interests in developing practical biomonitoring techniques that span the ecological hierarchy. Our work is theoretical, empirical and experimental, and most often in aquatic ecosystems like streams, lakes and coastal oceans. We are highly collaborative and have worked globally on different ecosystems.

Learn More

Frederic Laberge

Work in the Laberge lab attempts to understand how variation in brain structure and size influences organismic function, and identify the factors that drive evolution and plasticity of the nervous system. Current projects on this topic study variation in structure and size of the brain in populations of fish and amphibians, the proximate mechanisms generating this variation, and the functional consequences of this variation. Additionally, the lab is involved in collaborative efforts aiming to develop novel indicators of ecological performance and chronic stress in wild fish.

Learn More
Scroll to Top