Faculty

Research Areas

Name or Keywords

Reset

Elizabeth Mandeville

I study evolution in heterogeneous environments, over large geographic ranges, and in the presence of variable species assemblages by using computational approaches and bioinformatics techniques to analyze large, high-resolution genomic datasets. My work revolves around two focal questions: 1) How consistent are evolutionary and ecological outcomes of species interactions? and 2) To what extent are species evolutionarily cohesive across their ranges? Most of the fish species I study are affected by human-mediated disturbances, including species introductions and fragmentation of aquatic habitat by dams. I use large genomic, ecological, and isotopic datasets to understand how evolutionary processes function across ecological contexts.

Learn More

Shoshanah Jacobs

I conduct research along three axes:
1) Education: Our research program is designed to serve at the leading edge of scholarship in experiential and transdisciplinary education. It is driven by the existing evidence base in pedagogical best practice, in partnership with community need.
2) Biomimetics: Nature is overflowing with inspiring solutions to the world's most wicked problems. We work to understand how knowledge is successfully accessed and how biology is taught to non-specialists.
3) Environmental Ecology: We study mate selection and nest energy dynamics of seabirds and large ocean regime changes though DNA metabarcoding. We are also currently looking at Personal Protective Equipment litter in metropolitan areas.

Learn More

Michael Emes

Much of our current effort is focused on understanding the regulation of starch synthesis in storage tissues such as the developing seeds of cereals. Starch is the major determinant of yield in such crops, and has wide application in both the food and non-food industries, yet there remain a huge number of unknowns in what limits the production and structure of this important glucan polymer. There is also an increasing realization that different types of starch provide benefits for human health. Our research covers cereals such as maize, barley, rice, and wheat, as well as the model organism Arabidopsis thaliana. I lead a large, interdisciplinary team whose expertise includes plant biochemistry, genetics, molecular biology, microbiology, human physiology, and nutrition.

Learn More

Ryan Gregory

My lab studies:
1) Large-scale genome evolution, with a focus on the "C-value enigma," transposable elements, and whole-genome duplications.
2) DNA quantification methods to measure nuclear DNA content.
3) DNA-based methods for species identification and questions in evolutionary biology to understand how biological diversity arises at all levels.
4) Genome size evolution to understand the operation of natural selection and other evolutionary principles.
5) The interface between Integrative Genomics and Evolutionary Biology, otherwise disconnected fields within the biological sciences.

Learn More

Daniel Grunspan

My research background is on biology education, evolutionary medicine, and biocultural anthropology. Some of the themes I work on are: 1) student network formation in undergraduate classrooms and their impacts on learning; 2) the evolution of human social learning; and, 3) equity and biases in STEM and academic biology.

Learn More

Hafiz Maherali

We study the evolution of plant function and its mechanistic links to the ecological functioning of populations, communities and ecosystems. We study how and why plant functional traits evolve, and how these traits influence the outcome of ecological interactions that are known to shape community assembly, such as competition and mutualism. To do this work, we use several approaches, including comparative analyses among populations and species, observations of natural selection in the wild, and experimental studies that manipulate the identity of selective agents experienced by populations. We explore how traits influence community assembly and ecosystem function by carrying out experimental studies in controlled environments and in the field.

Learn More

Emma Allen-Vercoe

We currently have several projects in various areas that explore aspects of the gut microbiome and beyond:
1) Understanding how gut microbes are involved in the modulation of disease in colorectal cancer, diabetes, infection, and inflammatory bowel diseases
2) Isolation and characterisation of hunter-gatherer people's gut microbiome in an effort to discover novel microbial species and understand their function
3) Characterisation of the non-bacterial microbes of the human microbiome and their functions
4) Building model systems to study human gut microbes in vitro and in vivo
5) The study of 'oncomicrobes' (in particular, Fusobacterium nucleatum), and the development of colorectal cancer.
6) Translation to the clinic - development of 'microbial ecosystem therapeutics'

Learn More

Andrew Macdougall

Our main projects center on ecosystem services on Ontario farm landscapes, climate change in the Swedish High-arctic, and drivers of diversity decline in savannas of western North America.

Learn More

Robert Hanner

Molecular biodiversity research and highly qualified personnel training are lab focal points. Using field and lab-based methods together with bioinformatic tools and statistical modelling approaches, we study the patterns and drivers of species habitat occupancy, community assembly and food web ecology. This information is central to addressing a variety of questions pertaining to biodiversity conservation, environmental effects monitoring and food security. We also contribute to the development of standard methods and best practices necessary to enhance receptor uptake capacity for a variety of partners including indigenous peoples, industry, governmental as well as non-governmental organizations, and other citizen science initiatives.

Learn More

Paul Hebert

Morphological studies have provided an outline of biodiversity, but are incapable of surveying, managing and protecting it on a planetary scale. By exploiting two technologies that are gaining power exponentially – DNA sequencing and computational capacity – my research promises an ever-accelerating capacity to monitor and know life. In particular, I aim to automate species identification and discovery, and to employ this capacity to answer longstanding scientific questions. Automation is possible because sequence diversity in short, standardized gene regions (DNA barcodes) enables fast, cheap, and accurate species discrimination. New instruments can inexpensively gather millions of DNA sequences, enabling surveys of organismal diversity at speeds and scales that have been impossible.

Learn More

Ian Tetlow

My lab examines the control mechanisms underpinning starch biosynthesis in leaf chloroplasts (which make starch during the daytime, and degrade it at night) of the model plant Arabidopsis thaliana, and non-photosynthetic amyloplasts of cereal endosperms such as maize, wheat, barley and rice which make storage starches. More specifically, we are interested in the biochemical control mechanisms governing the many enzymes and enzyme classes which make up the core pathway of starch biosynthesis. This involves investigating the role of protein-protein interactions and protein phosphorylation in coordinating the proteins involved in starch synthesis and degradation within the plastid to produce the highly ordered and complex structure of the starch granule.

Learn More

Scott Ryan

While animal models have lead to huge advancements in our understanding of neurobiology, there is controversy over whether overexpression/silencing of gene expression is representative of diverse disease states. Indeed, the lack of availability of primary human neurons has made evaluating the pathological consequences of genomic mutations arduous. The use of human induced pluripotent stem cell (hiPSC) technology overcomes these limitations by providing a source of human neurons from both normal and disease genetic backgrounds. We currently focus on stem cell based models of Parkinson's Disease (PD) to study how mitochondrial stress mechanisms impact on neuronal function in human disease.

Learn More

Sarah Alderman

Current projects include:
- Mechanistic and functional connections between stress and adult neurogenesis in fish
- Effects of aquatic pollutants on fish physiology, morphology, and performance
- Neuroanatomy and regenerative capacity of the hagfish brain
- Quantitative proteomics as a tool for biomarker discovery and novel insights into animal physiology

Learn More

John Fryxell

Recent work has involved herbivores and carnivores movement ecology in Serengeti, woodland caribou, wolves, and moose in northern Ontario, and both wild and Norwegian reindeer. We conduct detailed field and experimental studies of both behavioural and demographic responses to landscape heterogeneity and compare these with theoretical models. As part of the Food from Thought research program, we are also evaluating the impact of anthropogenic stressors (nutrient additions due to fertilizer run-off, pesticide application, and temperature increase due to global climate change) on phytoplankton and zooplankton populations in massive aquatic mesocosms and the effect of marginal land restoration (prairies, wetlands, and secondary forest) on arthropod biodiversity using DNA meta-barcoding.

Learn More

Rebecca Shapiro

To better study the biology and virulence of fungal pathogens, we are developing new genomic technology platforms for diverse fungal species. We are exploiting CRISPR-Cas9 based technologies to revolutionize the way we do high-throughput functional genomic analysis in fungal pathogens. This is enabling us to map large-scale genetic interaction networks, and uncover genetic factors and pathways that mediate important phenotypes associated with pathogenesis, antifungal drug resistance, and other biological processes associated with fungal infectious diseases.

Learn More

Krassimir Yankulov

We use the budding yeast S.cerevisiae as a model organism to ask how established chromatin structure is preserved or changed during repetitive rounds of DNA replication, and how these structures are transmitted to daughter cells. We study the activity of chromatin factors that are highly conserved in all eukaryotes. Our specific focus is on cell-to-cell variations in gene expression. Most of these variations are mediated by chromatin. We know little about the mechanisms that confer these changes.

Learn More

Matthew Kimber

For bacteria, survival requires evading detection. Pathogens must evade their host, but all bacteria need to avoid being targeted by phages. Gram negative bacteria’s survival depends on lipopolysaccharide and capsule – highly complex carbohydrate molecules that coat their outer surface. The enzymes that produce these molecules are complex, drawing on a large set of basic modules but then tweaking and combining them into new organizations that accomplish unique ends. My lab is focused on understanding how the structures and large-scale architectures of these enzymes create the enormous variety of unique custom carbohydrates observed in nature. To this end, we use crystallography, enzymology, and a variety of biophysical assays and bioinformatics tools to better understand these proteins.

Learn More

John Srbely

My research program adopts a broad and integrative approach to the study of chronic musculoskeletal pain, incorporating both basic and clinical sciences. A major arm to my research program is investigating the underlying pathophysiologic mechanisms using both animal and human models. My research also aims to advance reliable diagnostic criteria (imaging, biomarkers) and physical assessment techniques (quantitative sensory testing, electromyography) that enable effective and reliable treatment and management strategies. By emphasizing transdisciplinary and multi-institutional collaborations, my research program will continue to inform future clinical and experimental initiatives in the field of chronic musculoskeletal pain.

Learn More

Jinzhong Fu

My recent research includes detecting genetic and phenotypic variations of a common toad (Bufo gargarizans) along elevational gradients, establishing associations between them, and understanding how these variations may have contributed to the adaptation process. I am also studying the Phrynocephalus lizards, particularly their signal evolution, special adaptation to high-elevation environment (5000m), and population genetics and speciation. I also plan to return to one of my favorite research topics, the evolution of unisexuality in the Caucasian rock lizards (Darevskia).

Learn More

Jasmin Lalonde

The growth of neurons and their organization into circuits is a tightly controlled process that follows a series of well-defined steps. Once differentiated and integrated into networks, neurons also retain a remarkable capacity to rapidly change the arrangement of their connections in response to activity, a feature that is believed to critically support cognition as well as our ability to learn and retain information for long periods of time. Accumulating evidence strongly suggests that perturbation of the molecular interactions responsible for the growth of neurons, or the capacity of these cells to adequately respond to activity-dependent signals, contributes to the pathophysiology of different brain disorders. Our laboratory uses a multidisciplinary approach to explore these questions.

Learn More

Shaun Sanders

The Sanders lab is interested in how neurons use the protein-lipid modification palmitoylation to target proteins to subcellular locations and to define how palmitoylation-dependent targeting contributes to physiological neuronal function and neuropathological conditions. Current projects include characterizing how palmitoylation of vesicular transport machinery regulates fast axonal transport and how palmitoylation of ion channels and their scaffold proteins regulates clustering at the axon initial segment, a critical site of neuronal excitability where action potentials are generated.

Learn More

Beren Robinson

We address how biodiversity arises especially in single populations of fishes composed of alternate ecotypes that live in different lake habitats. We study the factors that regulate the formation of these specialized ecotypes and have expanded theory by evaluating the role of phenotypic plasticity in adaptive biodiversity formation. Experience working with fish resource polymorphism since 1993 uniquely positions us to investigate how novel ecotypes evolve and may be converted into new species in the future countering biodiversity loss. We also study how commercial fishing affects fish traits in natural populations. Our focus on the diverse kinds of fish in natural populations is important because this is rarely considered in the contexts of ecological function, management and conservation.

Learn More

Alison Duncan

My research is focused on the biological effects of functional foods on chronic disease-related endpoints evaluated in human intervention studies. I have a focus on the agri-food-health continuum with a particular interest in studying the health effects of agri-foods such as soybeans, lentils and beans. I am interested in studies in all life-stages, however am actively involved with the Guelph Family Health Study (focus on families with young children) and with Agri-Food for Healthy Aging (focus on older adults). I am also interested in examining how different sub-groups perceive and consume functional foods as examined through comprehensive questionnaires.

Learn More

Amanda Wright

The role of physical properties in determining the metabolic and health effects of foods is often overlooked. We aim to better understand the relationships between food properties and metabolic response, particularly for dietary lipids. After chemical and structural analyses, real and model food systems are exposed to simulated gastrointestinal conditions using static and dynamic models. This generates insight into how food properties interact with the biochemical and biophysical aspects of digestion to determine nutrient release and absorption. We couple these experimental approaches with human clinical trials to relate material properties and their digestive behavior with metabolic endpoints (e.g. absorption, satiety, inflammation, lipemia, gastrointestinal symptoms).

Learn More

Glen Van Der Kraak

My research focuses on the reproductive physiology of fish. We study which hormones affect ovarian follicle development and if there are hallmark responses (changes in hormone biosynthesis, receptor abundance, recruitment of downstream activators) that determine whether an ovarian follicle is destined to mature and ovulate. This research is fundamental to defining spawning success which is a prime measure of reproductive fitness and provides the toolbox that we use to examine the mechanisms by which endocrine disrupting compounds (pharmaceuticals; ammonia) and complex environmental effluents (municipal waste water, pulp mills; oils sands process affected water) affect ovarian physiology.

Learn More
Scroll to Top