Faculty

Research Areas

Name or Keywords

Reset

John Vessey

My research focuses on asymmetric RNA localization and localized translational control in animal species. I have also studied asymmetric RNA localization in neural stem cells and their contribution to both cellular differentiation and cortical development across species. Currently, my students and I are investigating various proteins that we think are important for RNA regulation during brain development.

Learn More

John Vessey Read More »

Chris Whitfield

Research in my laboratory is focused on the architecture and assembly of the cell surfaces of pathogenic bacteria. Current areas of emphasis are:
1) Structure and function of multi-enzyme complexes required for the export of capsular polysaccharides through the periplasm and across the outer membrane of Gram-negative bacteria.
2) Structural basis for substrate recognition by ABC transporters involved in the export of bacterial cell-surface polysaccharides.
3) Structure and function studies of prokaryotic glycosyltransferase enzymes.
4) Mechanisms that couple glycan biosynthesis and chain extension to transport pathways.

Learn More

Chris Whitfield Read More »

Melanie Wills

My research group focuses on the diagnosis, prognosis and treatment of Lyme disease. I focus on different topics within this research theme, including: 1) the various forms that Borrelia (Lyme bacteria) can adopt and their corresponding role in the expression of the disease; 2) the effects of people and bacteria genetics in the expression of of the disease; 3) the development of new diagnostic tools; and, 4) the interactions that people diagnosed with Lyme disease have with the medical system.

Learn More

Melanie Wills Read More »

Marica Bakovic

My background is in molecular and cell biology of lipid metabolism. Currently, my students and I work on the regulation of membrane phospholipids, fatty acids, and methyl-group donors. More specifically, we look at regulation of genes involved in choline transport and phospholipid metabolism; nutrient transporters and kinetics of membrane transport; molecular and cell biology of lipids; the effect of nutrients on protein synthesis and gene expression; and, nutritional genomics (nutrigenomics) of risk factors for cardiovascular disease and insulin resistance.

Learn More

Marica Bakovic Read More »

Leah Bent

The primary goals of my research program are 1) to understand where posture is controlled 2) to understand what sensory information contributes to successful movement and equilibrium.
By investigating these two key questions I believe we will have a better understanding of how sensory decline contributes to a loss of mobility as we age. My research program involves two key areas of study:
1) To perform direct recordings from sensory afferents and motor efferents in awake human subjects to investigate sensory contributions to movement, balance control, and reflex responses.
2) To elicit balance perturbations to test the function of these reflex loops, and sensory contributions to the maintenance of equilibrium and postural control.

Learn More

Leah Bent Read More »

Andrea Clark

More than 4 million Canadians have arthritis and the number of people living with arthritis continues to increase year after year. Osteoarthritis involves multiple tissues and often includes cartilage damage, bone sclerosis and synovial inflammation. A pressing need remains for joint localized therapies and interventions that could slow or ideally stop this debilitating disease.
In our research, we use genetic and surgical models of spontaneous osteoarthritis (with old age) and post-traumatic osteoarthritis (following injury). We follow the progression of disease in a joint in order to better understand how proteins such as TRPV4, integrin alpha1beta1 and cilia influence chondrocyte signal transduction and thus the development of osteoarthritis.

Learn More

Andrea Clark Read More »

Dave Dyck

My interests lie in the regulation of fat and carbohydrate metabolism in skeletal muscle, with a particular emphasis on the dysregulation that occurs in obesity and diabetes. Several cytokines released from skeletal muscle, including leptin and adiponectin, are known to significantly affect insulin response in peripheral tissues such as muscle. My research has focused on the effects of these adipokines on muscle lipid and carbohydrate metabolism, and particularly, how the muscle becomes resistant to their effects in obese models and with high fat feeding. The interaction of diet and exercise is also a point of interest in terms of the muscle's response to various hormones including insulin, leptin and adiponectin.

Learn More

Dave Dyck Read More »

Graham Holloway

My research is primarily focused on understanding the regulation of mitochondrial bioenergetics, with a particular interest in studying fatty acid oxidation (breakdown of fat yielding energy) in skeletal and cardiac muscle. We also study human exercise performance as well as type 2 diabetes, heart failure, diabetic cardiomyopathy and various neuropathologies, all conditions that have been affiliated with alterations in mitochondria as a key event in the progression and/or development of the disease.

Learn More

Graham Holloway Read More »

Jen Monk

My students and I aim to understand the mechanistic role(s) of microbial-host intestinal communication. In particular, we focus on how microbial-derived metabolites (from dietary precursors) can influence the integrity of the colonic epithelial barrier (EB), as well as its capacity for defense and repair. The importance of this research lies on not only advancing basic knowledge on the effect of microbial metabolites on gastrointestinal functions, but also on informing the agri-food sector the ways in which the intake of nutrients, biomolecules, and dietary precursors can shape human health.

Learn More

Jen Monk Read More »

Josef Ackerman

The ecological and evolutionary problems that underlie my research interests include the convergent evolution of morphology, the manner by which organisms have adapted to their physical environment, physical aspects of energy transfer through ecosystems, and physical-biological linkages in aquatic systems. My lab is currently examining the physical ecology of trophic interactions, reproduction (including abiotic pollination and broadcast spawning), physical-biological interactions and larval recruitment, limnological processes involving hypoxia, hydrological processes involving benthic organisms, and sediment/substrate-water interactions.

Learn More

Josef Ackerman Read More »

Sally Adamowicz

My work spans five major axes of research:
1) The shape of the Tree of Life, including the relationships amongst species and the factors that influence the shape of this tree.
2) Major transitions in evolution, especially the frequency of transitions, the rate at which reversals occur, and the consequences of such transitions for molecular evolutionary patterns and speciation rates.
3) Evolutionary trends, with a focus on whether there are large-scale patterns in the history of life.
4) The diversity and integrity of freshwater ecosystems, including the diversity, distributions, traits, and origins of species.
5) The diversity of polar life, which I study using DNA barcoding to discover the true extent of arctic species diversity.

Learn More

Sally Adamowicz Read More »

Nicholas Bernier

Our research is focused on identifying and understanding the pathways by which environmental and social stressors are perceived, processed, and transduced into a neuroendocrine response. Several projects are aimed at elucidating how the neuroendocrine system orchestrates the stress response and focused specifically on the physiological functions of the corticotropin-releasing factor (CRF) system. Another major focus of the lab is to investigate the interactions between the neuroendocrine pathways that regulate the stress response and those involved in the regulation of appetite and growth.

Learn More

Nicholas Bernier Read More »

Steve Crawford

My research program spans three themes:
1) Great Lakes Fish Ecology: This includes developmental biology, animal behaviour, fish habitat, effect of exotic species, species-at-risk, fish population and community dynamics, and the response of ecosystems to disturbance.
2) Science in Natural Resource Management: I focus on Indigenous resource management negotiations with Canada, Ontario, as well as Industry and Environmental NGOs.
3) Indigenous-Western Science Knowledge Systems: I critically examine the theoretical and practical basis for engagement between traditional knowledge holders and 'Western' scientists/managers.

Learn More

Steve Crawford Read More »

Steve Newmaster

My research explores biodiversity from different perspectives and scales. We have develop molecular diagnostic tools for plant identification, including herbal product authentication and certification. Also, we contribute to the Plant Barcode of Life, investigating intra and interspecific variation in plants, and incorporate both Indigenous knowledge and DNA-based approaches to understanding diversity. In addition, I have extensively researched the effects of ecosystem management on community structure. Lastly, I am engaged in the scholarship of teaching and learning and have recently looked at 1) learning objects as mechanisms of engagement, 2) active learning within large first year biology classes, and 3) ancient pedagogies.

Learn More

Steve Newmaster Read More »

Ray Lu

My lab focuses on two main axes of research:
1) Unfolded Protein Response and Human Diseases: We study proteins that play key roles in animal stress responses, specifically the Unfolded Protein Response (UPR), which has been linked to animal development, cell differentiation, as well as a variety of human diseases such as Alzheimer’s, diabetes, cancer and viral infection.
2) Molecular Mechanisms of Aging: We are working to establish planarians as a new aging model to test the hypothesis that longevity requires multiplex resistance to stress. We hope to identify genes or alleles that confer such multiplex stress resistance and/or promote longevity.

Learn More

Ray Lu Read More »

Jaideep Mathur

Our lab works on three major areas of plant biology:
1) Cytoskeleton & Cell Morphogenesis: We study the pivotal role played by the cytoskeleton in cell shape development in higher plants.
2) Live Cell Visualization & Organelle Dynamics: We dissect the response hierarchy and localized co-operation between plastids, mitochondria and peroxisomes and also between the actin and microtubule components of the cytoskeleton during differential growth in higher plant cells.
3) Plant Interactions: We document the earliest intracellular responses of plant cells to diverse environmental stimuli.

Learn More

Jaideep Mathur Read More »

Rod Merrill

My research is in the general area of protein structure and dynamics and is specifically focused on the biochemistry of bacterial toxins involved in disease and consists of the following projects: Membrane structure of the colicin E1 ion channel; data mining and bioinformatics of bacterial virulence factors; optical spectroscopic approaches to study protein structure and dynamics; enzyme reaction mechanism of the bacterial mono-ADP-ribosyltransferase family; inhibition mechanisms and structural complexes of toxins with inhibitors; and, X-ray structures of protein-protein complexes involving toxins.

Learn More

Rod Merrill Read More »

Robert Mullen

My research focuses on three main areas of plant cell biology:
1) Characterization of enzymes involved in seed oil biosynthesis.
2) Understanding various aspects of the biogenesis of peroxisomes, including how membrane proteins are targeted to this organelle, and what role the endoplasmic reticulum (ER) serves in the formation of peroxisomes.
3) Identification and characterization of a unique class of integral membrane proteins known as "Tail-Anchored" (TA) proteins.

Learn More

Robert Mullen Read More »

Ryan Gregory

My lab studies:
1) Large-scale genome evolution, with a focus on the "C-value enigma," transposable elements, and whole-genome duplications.
2) DNA quantification methods to measure nuclear DNA content.
3) DNA-based methods for species identification and questions in evolutionary biology to understand how biological diversity arises at all levels.
4) Genome size evolution to understand the operation of natural selection and other evolutionary principles.
5) The interface between Integrative Genomics and Evolutionary Biology, otherwise disconnected fields within the biological sciences.

Learn More

Ryan Gregory Read More »

Shoshanah Jacobs

I conduct research along three axes:
1) Education: Our research program is designed to serve at the leading edge of scholarship in experiential and transdisciplinary education. It is driven by the existing evidence base in pedagogical best practice, in partnership with community need.
2) Biomimetics: Nature is overflowing with inspiring solutions to the world's most wicked problems. We work to understand how knowledge is successfully accessed and how biology is taught to non-specialists.
3) Environmental Ecology: We study mate selection and nest energy dynamics of seabirds and large ocean regime changes though DNA metabarcoding. We are also currently looking at Personal Protective Equipment litter in metropolitan areas.

Learn More

Shoshanah Jacobs Read More »

Hafiz Maherali

We study the evolution of plant function and its mechanistic links to the ecological functioning of populations, communities and ecosystems. We study how and why plant functional traits evolve, and how these traits influence the outcome of ecological interactions that are known to shape community assembly, such as competition and mutualism. To do this work, we use several approaches, including comparative analyses among populations and species, observations of natural selection in the wild, and experimental studies that manipulate the identity of selective agents experienced by populations. We explore how traits influence community assembly and ecosystem function by carrying out experimental studies in controlled environments and in the field.

Learn More

Hafiz Maherali Read More »

Scroll to Top