Keyword: Animal and plant conservation

Ryan Norris

Research in my lab is focused on the behaviour, ecology, and conservation of animals living in seasonal environments. Much of our field work is conducted on songbirds and butterflies but also includes past and present studies on salamanders, fruit flies, nightjars, seabirds, and domestic cats. We use both observational and experimental approaches, often combining these with emerging tracking technologies, to understand factors influencing variation in fitness and population abundance. Our two primary long-term studies are on Canada jays in Algonquin Park, ON (50+ yrs) and Savannah sparrows on Kent Island, NB (30+ yrs).

Learn More

Ryan Norris Read More »

Josef Ackerman

The ecological and evolutionary problems that underlie my research interests include the convergent evolution of morphology, the manner by which organisms have adapted to their physical environment, physical aspects of energy transfer through ecosystems, and physical-biological linkages in aquatic systems. My lab is currently examining the physical ecology of trophic interactions, reproduction (including abiotic pollination and broadcast spawning), physical-biological interactions and larval recruitment, limnological processes involving hypoxia, hydrological processes involving benthic organisms, and sediment/substrate-water interactions.

Learn More

Josef Ackerman Read More »

Sally Adamowicz

My work spans five major axes of research:
1) The shape of the Tree of Life, including the relationships amongst species and the factors that influence the shape of this tree.
2) Major transitions in evolution, especially the frequency of transitions, the rate at which reversals occur, and the consequences of such transitions for molecular evolutionary patterns and speciation rates.
3) Evolutionary trends, with a focus on whether there are large-scale patterns in the history of life.
4) The diversity and integrity of freshwater ecosystems, including the diversity, distributions, traits, and origins of species.
5) The diversity of polar life, which I study using DNA barcoding to discover the true extent of arctic species diversity.

Learn More

Sally Adamowicz Read More »

Steve Crawford

My research program spans three themes:
1) Great Lakes Fish Ecology: This includes developmental biology, animal behaviour, fish habitat, effect of exotic species, species-at-risk, fish population and community dynamics, and the response of ecosystems to disturbance.
2) Science in Natural Resource Management: I focus on Indigenous resource management negotiations with Canada, Ontario, as well as Industry and Environmental NGOs.
3) Indigenous-Western Science Knowledge Systems: I critically examine the theoretical and practical basis for engagement between traditional knowledge holders and 'Western' scientists/managers.

Learn More

Steve Crawford Read More »

Shoshanah Jacobs

I conduct research along three axes:
1) Education: Our research program is designed to serve at the leading edge of scholarship in experiential and transdisciplinary education. It is driven by the existing evidence base in pedagogical best practice, in partnership with community need.
2) Biomimetics: Nature is overflowing with inspiring solutions to the world's most wicked problems. We work to understand how knowledge is successfully accessed and how biology is taught to non-specialists.
3) Environmental Ecology: We study mate selection and nest energy dynamics of seabirds and large ocean regime changes though DNA metabarcoding. We are also currently looking at Personal Protective Equipment litter in metropolitan areas.

Learn More

Shoshanah Jacobs Read More »

Hafiz Maherali

We study the evolution of plant function and its mechanistic links to the ecological functioning of populations, communities and ecosystems. We study how and why plant functional traits evolve, and how these traits influence the outcome of ecological interactions that are known to shape community assembly, such as competition and mutualism. To do this work, we use several approaches, including comparative analyses among populations and species, observations of natural selection in the wild, and experimental studies that manipulate the identity of selective agents experienced by populations. We explore how traits influence community assembly and ecosystem function by carrying out experimental studies in controlled environments and in the field.

Learn More

Hafiz Maherali Read More »

Rob McLaughlin

In one main component, my students examine changes in the biodiversity of stream fishes caused by in-stream barriers used to control sea lamprey in the Laurentian Great Lakes. In a second main component, my students use smaller scale approaches focused on diversification in the foraging and migratory movements of brook charr (Salvelinus fontinalis) to understand the role that individual differences in behaviour have in facilitating population divergence in physiology, morphology, and life history, and the creation of new biodiversity. My research program has two, additional minor components: 1) assessing the effects of agricultural practices on stream fishes and 2) examining basic research questions related to animal movement.

Learn More

Rob McLaughlin Read More »

Amy Newman

We study proximate and ultimate questions around stress ecophysiology. We combine field studies and laboratory analyses to examine the persistent effects of early life stress on physiology, behaviour and fitness. We use a variety of approaches from large-scale manipulations in the wild to controlled laboratory experiments. I am excited by integrative questions that span levels of biological organization and students in the lab are encouraged to explore questions from evolutionary, ecological, physiological and molecular perspectives.

Learn More

Amy Newman Read More »

Robert Hanner

Molecular biodiversity research and highly qualified personnel training are lab focal points. Using field and lab-based methods together with bioinformatic tools and statistical modelling approaches, we study the patterns and drivers of species habitat occupancy, community assembly and food web ecology. This information is central to addressing a variety of questions pertaining to biodiversity conservation, environmental effects monitoring and food security. We also contribute to the development of standard methods and best practices necessary to enhance receptor uptake capacity for a variety of partners including indigenous peoples, industry, governmental as well as non-governmental organizations, and other citizen science initiatives.

Learn More

Robert Hanner Read More »

Brian Husband

My research program investigates the ecological and evolutionary processes operating in plant populations, both wild and domesticated. Much of our work is conducted through the lens of plant reproductive systems, which control the quantity and quality of sperm and eggs, patterns of mating, and ultimately the transmission of genetic variation from one generation to the next. Current research projects include: 1) mating system variation and evolution, 2) polyploid speciation, 3) genetic and phenotypic consequences of whole genome duplication; 4) biology of small populations, and 5) impacts of hybridization between introduced species and endangered congeners. We work on a variety of study systems, including Arabidopsis, apple, strawberry, fireweed, American chestnut, and mulberry.

Learn More

Brian Husband Read More »

Karl Cottenie

In the next 5 years, I will shift my research strategy by consolidating 4 streams of my past research: temporal dynamics, host-symbiont interactions, small mammal metacommunity dynamics, and DNA-based species identification and bioinformatics. I will focus on a study system that combines my past strengths in metacommunity ecology at multiple scales, but will apply them to a novel system: microbial metacommunities nested within a matrix of metacommunity of different host species.

Learn More

Karl Cottenie Read More »

Elizabeth Boulding

The current rates of environmental change experienced by animal populations are higher than have been experienced over much of fossil record. My laboratory investigates the factors that determine whether a population will adapt to a change in the environment without going extinct. Our current projects are:
1) Invasion biology, comparing scales of local genetic adaptation to exotic predators by prey with high and low dispersal potential.
2) Genomic selection and genome wide association analysis of growth, shape, pathogen resistant and life history traits in Atlantic salmon populations.
3) Assessing heritable variation in biological control of the salmon louse by two species of cleaner fish and co-operative behaviour by their client, Atlantic salmon.

Learn More

Elizabeth Boulding Read More »

M. Alex Smith

In this lab, we work to better understand the contemporary distribution of hyperdiverse, and often cryptic, species of insects across major ecological gradients in tropical and temperate environments. Our research is built upon projects designed to explore the causes and consequences of biodiversity across elevational, latitudinal and disturbance gradients and builds on long-term collections using phylogenetic, functional and physiological measures. I am committed to teaching, and learning from, diverse individuals and scientists, participating in outreach, improving how we communicate science, and publishing accessible research and data.

Learn More

M. Alex Smith Read More »

Kevin McCann

Generally speaking, we are interested in understanding how biological structure, broadly defined to include structure of all biological forms, mitigates the stability and functioning of ecosystems. This question naturally leads to understanding how human impacts alter biological structure and so also how impacts may potentially alter the stability and functioning of whole ecosystems. This latter aspect of human impacts brings has our empirically motivated interests in developing practical biomonitoring techniques that span the ecological hierarchy. Our work is theoretical, empirical and experimental, and most often in aquatic ecosystems like streams, lakes and coastal oceans. We are highly collaborative and have worked globally on different ecosystems.

Learn More

Kevin McCann Read More »

Scroll to Top