Research Area: Human health

Matthew Sorbara

Healthy gut microbiota can be disrupted due to antibiotic treatment, intestinal inflammation, or changes in diet. Targeted restoration of the microbiota will require an understanding of how genomic diversity between closely related microbes influences their ability to drive beneficial functions. To address this, our laboratory will use a large collection of whole-genome sequenced isolates to understand how variation between closely related gut isolates alters their ability to prevent pathogen expansion and maintain homeostatic interactions with the mucosal immune system.

Learn More

Matthew Sorbara Read More »

Mazyar Fallah

I study the neurophysiology of cognitive processes. My research focuses on eye movements and how they interact with cognitive and executive functions. For example, I explore how features are integrated across multiple brain areas to form object representations, how attention and object representations drive eye movements, and how the visual system prioritizes peripersonal space. I am also interested in the networks in the brain that perform all these processes and how they can be impaired due to concussion and subconcussive impacts.

Learn More

Mazyar Fallah Read More »

Kerry Ritchie

I conduct research in two areas:
1) Impact of teaching strategies on student learning and engagement in large classes: My goal is to modify and scale best teaching practices to suit large class sizes (100-600+ students). I evaluate the impact of these strategies on student learning and engagement. I am also interested in novel methods for teaching critical thinking and communication skills in health sciences education.
2) Health and performance of emerging adults in the early transition to university: I aim to better understand student experience to develop programs and strategies to optimize student performance. I study how lifestyle choices, social environments, and study strategies can influence student wellbeing and academic success.

Learn More

Kerry Ritchie Read More »

Lawrence Spriet

Dr. Spriet's basic research examines how skeletal muscle generates the large amounts of energy needed to exercise and compete in work and sport situations. The pathways that metabolize carbohydrate and lipid as fuel to produce energy are studied in human skeletal muscle. His practical research examines whether compounds that are purported to be "ergogenic" or work enhancing agents actually augment muscle metabolism and/or improve human performance (e.g. blood doping, creatine, carnitine, pyruvate, taurine, caffeine and omega-3 fatty acids). He also conducts hydration/sweat testing and research aimed at counteracting the effects of dehydration in athletes engaging in stop-and-go sports like ice hockey, basketball, and soccer.

Learn More

Lawrence Spriet Read More »

John Zettel

My current research blends my research backgrounds in biomechanics and visuomotor control to examine how postural control is integrated and coordinated with voluntary movement (e.g. reaching, stepping, whole-body reaching). I am interested in developing an understanding of balance and movement both from a fundamental level, and in application to the immense problem of impaired mobility and falls in older adults and other clinical populations (e.g. stroke).

Learn More

John Zettel Read More »

David Wright

Since changes in how the body metabolizes glucose are a hallmark of Type 2 diabetes, understanding how the function and metabolism of adipose tissue are regulated will be crucial for understanding diabetes itself. My students and I look at how exercise and nutritional interventions affect gene expression in adipose tissue, and, in turn, how these changes can affect both adipose tissue metabolism and whole-body glucose metabolism. One of the applications of my research is to potentially develop new, non-drug-based approaches that can be used to prevent and/or reverse Type 2 diabetes.

Learn More

David Wright Read More »

Lori Vallis

To date, my research program has focused on strategies used to execute safe movement during adapted locomotor tasks (steering, obstacle circumvention, obstacle stepping) and the role of vision in these tasks. I am also interested in exploring the impact of cognitive or brain function on locomotor control. Given the commonness of dual tasking in our daily living, I hope to map patterns of cognitive-locomotor interference for multiple adapted locomotor (e.g. obstacle circumvention) and cognitive activities (e.g. visuo-spatial cognitive tasks) and ascertain optimal training strategies for dual-task performance.

Learn More

Lori Vallis Read More »

Jeremy Simpson

My lab conducts research on several areas related to cardio-respiratory physiology and pathophysiology. For example, we are studying: 1) how the heart initially adapts to hypertension before the development of contractile dysfunction and heart failure; 2) skeletal and cardiomyocyte cell signalling during normal and hypoxic conditions; 3) proteomic alterations that occur in limb muscles during exercise; 4) key post-translational modifications of myofilament proteins that arise during the development of whole muscle dysfunction as a result of fatigue or ischemia; and, 5) dyastolic dysfunction in various physiological and pathological states, such as aging, sex differences, and models of heart failure.

Learn More

Jeremy Simpson Read More »

Lindsay Robinson

I am interested in understanding the physiological roles and regulation of adipose tissue and skeletal muscle-derived cytokines in mediating metabolic processes in the body. I am particularly interested in the mechanisms by which dietary factors and/or exercise modulate various cytokines and inflammatory mediators implicated in insulin resistance, a key characteristic of obesity and type 2 diabetes. My current research projects are:
1) Regulation of adipose tissue-derived cytokines in integrative metabolism.
2) Effect of n-3 and n-6 fatty acids in the presence and absence of LPS on adipocyte secretory factors and underlying mechanisms.
3) Effect of dietary fatty acids on pro-inflammatory markers in an in vitro murine adipocyte macrophage co-culture model.

Learn More

Lindsay Robinson Read More »

Coral Murrant

My main research focus centres around the issue of how contracting skeletal muscle can communicate with blood vessels in order to ensure adequate blood flow to the working skeletal muscle cells. There is a direct relationship between skeletal muscle metabolic rate and blood flow. This type of relationship requires that active skeletal muscle cells communicate their need for blood flow to the cells of the vasculature, endothelial cells and vascular smooth muscle cells, and that these cells alter their function in order to ensure the proper blood flow delivery. I am interested in this intercellular communication.

Learn More

Coral Murrant Read More »

Andrea Clark

More than 4 million Canadians have arthritis and the number of people living with arthritis continues to increase year after year. Osteoarthritis involves multiple tissues and often includes cartilage damage, bone sclerosis and synovial inflammation. A pressing need remains for joint localized therapies and interventions that could slow or ideally stop this debilitating disease.
In our research, we use genetic and surgical models of spontaneous osteoarthritis (with old age) and post-traumatic osteoarthritis (following injury). We follow the progression of disease in a joint in order to better understand how proteins such as TRPV4, integrin alpha1beta1 and cilia influence chondrocyte signal transduction and thus the development of osteoarthritis.

Learn More

Andrea Clark Read More »

Jen Monk

My students and I aim to understand the mechanistic role(s) of microbial-host intestinal communication. In particular, we focus on how microbial-derived metabolites (from dietary precursors) can influence the integrity of the colonic epithelial barrier (EB), as well as its capacity for defense and repair. The importance of this research lies on not only advancing basic knowledge on the effect of microbial metabolites on gastrointestinal functions, but also on informing the agri-food sector the ways in which the intake of nutrients, biomolecules, and dietary precursors can shape human health.

Learn More

Jen Monk Read More »

Graham Holloway

My research is primarily focused on understanding the regulation of mitochondrial bioenergetics, with a particular interest in studying fatty acid oxidation (breakdown of fat yielding energy) in skeletal and cardiac muscle. We also study human exercise performance as well as type 2 diabetes, heart failure, diabetic cardiomyopathy and various neuropathologies, all conditions that have been affiliated with alterations in mitochondria as a key event in the progression and/or development of the disease.

Learn More

Graham Holloway Read More »

Dave Dyck

My interests lie in the regulation of fat and carbohydrate metabolism in skeletal muscle, with a particular emphasis on the dysregulation that occurs in obesity and diabetes. Several cytokines released from skeletal muscle, including leptin and adiponectin, are known to significantly affect insulin response in peripheral tissues such as muscle. My research has focused on the effects of these adipokines on muscle lipid and carbohydrate metabolism, and particularly, how the muscle becomes resistant to their effects in obese models and with high fat feeding. The interaction of diet and exercise is also a point of interest in terms of the muscle's response to various hormones including insulin, leptin and adiponectin.

Learn More

Dave Dyck Read More »

Leah Bent

The primary goals of my research program are 1) to understand where posture is controlled 2) to understand what sensory information contributes to successful movement and equilibrium.
By investigating these two key questions I believe we will have a better understanding of how sensory decline contributes to a loss of mobility as we age. My research program involves two key areas of study:
1) To perform direct recordings from sensory afferents and motor efferents in awake human subjects to investigate sensory contributions to movement, balance control, and reflex responses.
2) To elicit balance perturbations to test the function of these reflex loops, and sensory contributions to the maintenance of equilibrium and postural control.

Learn More

Leah Bent Read More »

Marica Bakovic

My background is in molecular and cell biology of lipid metabolism. Currently, my students and I work on the regulation of membrane phospholipids, fatty acids, and methyl-group donors. More specifically, we look at regulation of genes involved in choline transport and phospholipid metabolism; nutrient transporters and kinetics of membrane transport; molecular and cell biology of lipids; the effect of nutrients on protein synthesis and gene expression; and, nutritional genomics (nutrigenomics) of risk factors for cardiovascular disease and insulin resistance.

Learn More

Marica Bakovic Read More »

Ray Lu

My lab focuses on two main axes of research:
1) Unfolded Protein Response and Human Diseases: We study proteins that play key roles in animal stress responses, specifically the Unfolded Protein Response (UPR), which has been linked to animal development, cell differentiation, as well as a variety of human diseases such as Alzheimer’s, diabetes, cancer and viral infection.
2) Molecular Mechanisms of Aging: We are working to establish planarians as a new aging model to test the hypothesis that longevity requires multiplex resistance to stress. We hope to identify genes or alleles that confer such multiplex stress resistance and/or promote longevity.

Learn More

Ray Lu Read More »

Nina Jones

Research in our laboratory is focused on defining eukaryotic signal transduction pathways, and investigating how mutations in components of these pathways can contribute to human disease. Signal transduction is a central process in multicellular organisms that allows for the exchange of informational cues between and within cells. Current areas of research include: 1) Signalling pathways controlling kidney podocyte morphology; 2) focal adhesion dynamics in cancer cells; and, 3) characterization of a novel neuronal adaptor protein, ShcD.

Learn More

Nina Jones Read More »

Marc Coppolino

Cell adhesion and migration are fundamentally important to the existence of multicellular organisms. This is obvious in light of the numerous diseases that can afflict humans when these processes are impaired. Disruption of normal cellular adhesive and migratory activities can lead to developmental disorders and contribute to the progression of arthritis, immunological deficiencies and cancer. Both cell adhesion and migration are complex processes involving numerous biochemical signalling events, reorganization of the cellular cytoskeleton and localized remodelling of the plasma membrane. It is the goal of my laboratory to elucidate the molecular mechanisms that link these activities, allowing them to be coordinated during changes in cell adhesion and motility.

Learn More

Marc Coppolino Read More »

Jasmin Lalonde

The growth of neurons and their organization into circuits is a tightly controlled process that follows a series of well-defined steps. Once differentiated and integrated into networks, neurons also retain a remarkable capacity to rapidly change the arrangement of their connections in response to activity, a feature that is believed to critically support cognition as well as our ability to learn and retain information for long periods of time. Accumulating evidence strongly suggests that perturbation of the molecular interactions responsible for the growth of neurons, or the capacity of these cells to adequately respond to activity-dependent signals, contributes to the pathophysiology of different brain disorders. Our laboratory uses a multidisciplinary approach to explore these questions.

Learn More

Jasmin Lalonde Read More »

John Srbely

My research program adopts a broad and integrative approach to the study of chronic musculoskeletal pain, incorporating both basic and clinical sciences. A major arm to my research program is investigating the underlying pathophysiologic mechanisms using both animal and human models. My research also aims to advance reliable diagnostic criteria (imaging, biomarkers) and physical assessment techniques (quantitative sensory testing, electromyography) that enable effective and reliable treatment and management strategies. By emphasizing transdisciplinary and multi-institutional collaborations, my research program will continue to inform future clinical and experimental initiatives in the field of chronic musculoskeletal pain.

Learn More

John Srbely Read More »

Emma Allen-Vercoe

We currently have several projects in various areas that explore aspects of the gut microbiome and beyond:
1) Understanding how gut microbes are involved in the modulation of disease in colorectal cancer, diabetes, infection, and inflammatory bowel diseases
2) Isolation and characterisation of hunter-gatherer people's gut microbiome in an effort to discover novel microbial species and understand their function
3) Characterisation of the non-bacterial microbes of the human microbiome and their functions
4) Building model systems to study human gut microbes in vitro and in vivo
5) The study of 'oncomicrobes' (in particular, Fusobacterium nucleatum), and the development of colorectal cancer.
6) Translation to the clinic - development of 'microbial ecosystem therapeutics'

Learn More

Emma Allen-Vercoe Read More »

Scott Ryan

While animal models have lead to huge advancements in our understanding of neurobiology, there is controversy over whether overexpression/silencing of gene expression is representative of diverse disease states. Indeed, the lack of availability of primary human neurons has made evaluating the pathological consequences of genomic mutations arduous. The use of human induced pluripotent stem cell (hiPSC) technology overcomes these limitations by providing a source of human neurons from both normal and disease genetic backgrounds. We currently focus on stem cell based models of Parkinson's Disease (PD) to study how mitochondrial stress mechanisms impact on neuronal function in human disease.

Learn More

Scott Ryan Read More »

Scroll to Top